현재 위치
홈상품상세정보
*도서소개
*출판사도서소개
*목차
1.1 데이터를 지식으로 바꾸는 지능적인 시스템 구축
1.2 머신 러닝의 세 가지 종류
__1.2.1 지도 학습으로 미래 예측
__1.2.2 강화 학습으로 반응형 문제 해결
__1.2.3 비지도 학습으로 숨겨진 구조 발견
1.3 기본 용어와 표기법 소개
__1.3.1 이 책에서 사용하는 표기법과 규칙
__1.3.2 머신 러닝 용어
1.4 머신 러닝 시스템 구축 로드맵
__1.4.1 전처리: 데이터 형태 갖추기
__1.4.2 예측 모델 훈련과 선택
__1.4.3 모델을 평가하고 본 적 없는 샘플로 예측
1.5 머신 러닝을 위한 파이썬
__1.5.1 파이썬과 PIP에서 패키지 설치
__1.5.2 아나콘다 파이썬 배포판과 패키지 관리자 사용
__1.5.3 과학 컴퓨팅, 데이터 과학, 머신 러닝을 위한 패키지
1.6 요약
2장. 간단한 분류 알고리즘 훈련
2.1 인공 뉴런: 초기 머신 러닝의 간단한 역사
__2.1.1 인공 뉴런의 수학적 정의
__2.1.2 퍼셉트론 학습 규칙
2.2 파이썬으로 퍼셉트론 학습 알고리즘 구현
__2.2.1 객체 지향 퍼셉트론 API
__2.2.2 붓꽃 데이터셋에서 퍼셉트론 훈련
2.3 적응형 선형 뉴런과 학습의 수렴
__2.3.1 경사 하강법으로 손실 함수 최소화
__2.3.2 파이썬으로 아달린 구현
__2.3.3 특성 스케일을 조정하여 경사 하강법 결과 향상
__2.3.4 대규모 머신 러닝과 확률적 경사 하강법
2.4 요약
3장. 사이킷런을 타고 떠나는 머신 러닝 분류 모델 투어
3.1 분류 알고리즘 선택
3.2 사이킷런 첫걸음: 퍼셉트론 훈련
3.3 로지스틱 회귀를 사용한 클래스 확률 모델링
__3.3.1 로지스틱 회귀의 이해와 조건부 확률
__3.3.2 로지스틱 손실 함수의 가중치 학습
__3.3.3 아달린 구현을 로지스틱 회귀 알고리즘으로 변경
__3.3.4 사이킷런을 사용하여 로지스틱 회귀 모델 훈련
__3.3.5 규제를 사용하여 과대적합 피하기
3.4 서포트 벡터 머신을 사용한 최대 마진 분류
__3.4.1 최대 마진
__3.4.2 슬랙 변수를 사용하여 비선형 분류 문제 다루기
__3.4.3 사이킷런의 다른 구현
3.5 커널 SVM을 사용하여 비선형 문제 풀기
__3.5.1 선형적으로 구분되지 않는 데이터를 위한 커널 방법
__3.5.2 커널 기법을 사용하여 고차원 공간에서 분할 초평면 찾기
3.6 결정 트리 학습
__3.6.1 정보 이득 최대화: 자원을 최대로 활용
__3.6.2 결정 트리 만들기
__3.6.3 랜덤 포레스트로 여러 개의 결정 트리 연결
3.7 k-최근접 이웃: 게으른 학습 알고리즘
3.8 요약
4장. 좋은 훈련 데이터셋 만들기: 데이터 전처리
4.1 누락된 데이터 다루기
__4.1.1 테이블 형태 데이터에서 누락된 값 식별
__4.1.2 누락된 값이 있는 훈련 샘플이나 특성 제외
__4.1.3 누락된 값 대체
__4.1.4 사이킷런 추정기 API 익히기
4.2 범주형 데이터 다루기
__4.2.1 판다스를 사용한 범주형 데이터 인코딩
__4.2.2 순서가 있는 특성 매핑
__4.2.3 클래스 레이블 인코딩
__4.2.4 순서가 없는 특성에 원-핫 인코딩 적용
4.3 데이터셋을 훈련 데이터셋과 테스트 데이터셋으로 나누기
4.4 특성 스케일 맞추기
4.5 유용한 특성 선택
__4.5.1 모델 복잡도 제한을 위한 L1 규제와 L2 규제
__4.5.2 L2 규제의 기하학적 해석
__4.5.3 L1 규제를 사용한 희소성
__4.5.4 순차 특성 선택 알고리즘
4.6 랜덤 포레스트의 특성 중요도 사용
4.7 요약
5장. 차원 축소를 사용한 데이터 압축
5.1 주성분 분석을 통한 비지도 차원 축소
__5.1.1 주성분 분석의 주요 단계
__5.1.2 주성분 추출 단계
__5.1.3 총 분산과 설명된 분산
__5.1.4 특성 변환
__5.1.5 사이킷런의 주성분 분석
5.2 선형 판별 분석을 통한 지도 방식의 데이터 압축
__5.2.1 주성분 분석 vs 선형 판별 분석
__5.2.2 선형 판별 분석의 내부 동작 방식
__5.2.3 산포 행렬 계산
__5.2.4 새로운 특성 부분 공간을 위해 선형 판별 벡터 선택
__5.2.5 새로운 특성 공간으로 샘플 투영
__5.2.6 사이킷런의 LDA
5.3 비선형 차원 축소와 시각화
__5.3.1 비선형 차원 축소를 고려하는 이유는 무엇인가요?
__5.3.2 t-SNE를 사용한 데이터 시각화
5.4 요약
6장. 모델 평가와 하이퍼파라미터 튜닝의 모범 사례
6.1 파이프라인을 사용한 효율적인 워크플로
__6.1.1 위스콘신 유방암 데이터셋
__6.1.2 파이프라인으로 변환기와 추정기 연결
6.2 k-겹 교차 검증을 사용한 모델 성능 평가
__6.2.1 홀드아웃 방법
__6.2.2 k-겹 교차 검증
6.3 학습 곡선과 검증 곡선을 사용한 알고리즘 디버깅
__6.3.1 학습 곡선으로 편향과 분산 문제 분석
__6.3.2 검증 곡선으로 과대적합과 과소적합 조사
6.4 그리드 서치를 사용한 머신 러닝 모델 세부 튜닝
__6.4.1 그리드 서치를 사용한 하이퍼파라미터 튜닝
__6.4.2 랜덤 서치로 하이퍼파라미터 설정을 더 넓게 탐색하기
__6.4.3 SH 방식을 사용한 자원 효율적인 하이퍼파라미터 탐색
__6.4.4 중첩 교차 검증을 사용한 알고리즘 선택
6.5 여러 가지 성능 평가 지표
__6.5.1 오차 행렬
__6.5.2 분류 모델의 정밀도와 재현율 최적화
__6.5.3 ROC 곡선 그리기
__6.5.4 다중 분류의 성능 지표
__6.5.5 불균형한 클래스 다루기
6.6 요약
7장. 다양한 모델을 결합한 앙상블 학습
7.1 앙상블 학습
7.2 다수결 투표를 사용한 분류 앙상블
__7.2.1 간단한 다수결 투표 분류기 구현
__7.2.2 다수결 투표 방식을 사용하여 예측 만들기
__7.2.3 앙상블 분류기의 평가와 튜닝
7.3 배깅: 부트스트랩 샘플링을 통한 분류 앙상블
__7.3.1 배깅 알고리즘의 작동 방식
__7.3.2 배깅으로 Wine 데이터셋의 샘플 분류
7.4 약한 학습기를 이용한 에이다부스트
__7.4.1 부스팅 작동 원리
__7.4.2 사이킷런에서 에이다부스트 사용
7.5 그레이디언트 부스팅: 손실 그레이디언트 기반의 앙상블 훈련
__7.5.1 에이다부스트와 그레이디언트 부스팅 비교
__7.5.2 그레이디언트 부스팅 알고리즘 소개
__7.5.3 분류를 위한 그레이디언트 부스팅 알고리즘
__7.5.4 그레이디언트 부스팅 분류 예제
__7.5.5 XGBoost 사용하기
7.6 요약
8장. 감성 분석에 머신 러닝 적용
8.1 텍스트 처리용 IMDb 영화 리뷰 데이터 준비
__8.1.1 영화 리뷰 데이터셋 구하기
__8.1.2 영화 리뷰 데이터셋을 더 간편한 형태로 전처리
8.2 BoW 모델 소개
__8.2.1 단어를 특성 벡터로 변환
__8.2.2 tf-idf를 사용하여 단어 적합성 평가
__8.2.3 텍스트 데이터 정제
__8.2.4 문서를 토큰으로 나누기
8.3 문서 분류를 위한 로지스틱 회귀 모델 훈련
8.4 대용량 데이터 처리: 온라인 알고리즘과 외부 메모리 학습
8.5 잠재 디리클레 할당을 사용한 토픽 모델링
__8.5.1 LDA를 사용한 텍스트 문서 분해
__8.5.2 사이킷런의 LDA
8.6 요약
9장. 회귀 분석으로 연속적 타깃 변수 예측
9.1 선형 회귀
__9.1.1 단순 선형 회귀
__9.1.2 다중 선형 회귀
9.2 에임스 주택 데이터셋 탐색
__9.2.1 데이터프레임으로 에임스 주택 데이터셋 읽기
__9.2.2 데이터셋의 중요 특징 시각화
__9.2.3 상관관계 행렬을 사용한 분석
9.3 최소 제곱 선형 회귀 모델 구현
__9.3.1 경사 하강법으로 회귀 모델의 파라미터 구하기
__9.3.2 사이킷런으로 회귀 모델의 가중치 추정
9.4 RANSAC을 사용하여 안정된 회귀 모델 훈련
9.5 선형 회귀 모델의 성능 평가
9.6 회귀에 규제 적용
9.7 선형 회귀 모델을 다항 회귀로 변환
__9.7.1 사이킷런을 사용하여 다항식 항 추가
__9.7.2 에임스 주택 데이터셋을 사용한 비선형 관계 모델링
9.8 랜덤 포레스트를 사용하여 비선형 관계 다루기
__9.8.1 결정 트리 회귀
__9.8.2 랜덤 포레스트 회귀
9.9 요약
10장. 레이블되지 않은 데이터 다루기: 군집 분석
10.1 k-평균 알고리즘을 사용하여 유사한 객체 그룹핑
__10.1.1 사이킷런을 사용한 k-평균 군집
__10.1.2 k-평균++로 초기 클러스터 센트로이드를 똑똑하게 할당
__10.1.3 직접 군집 vs 간접 군집
__10.1.4 엘보우 방법을 사용하여 최적의 클러스터 개수 찾기
__10.1.5 실루엣 그래프로 군집 품질을 정량화
10.2 계층적인 트리로 클러스터 조직화
__10.2.1 상향식으로 클러스터 묶기
__10.2.2 거리 행렬에서 계층 군집 수행
__10.2.3 히트맵에 덴드로그램 연결
__10.2.4 사이킷런에서 병합 군집 적용
10.3 DBSCAN을 사용하여 밀집도가 높은 지역 찾기
10.4 요약
11장. 다층 인공 신경망을 밑바닥부터 구현
11.1 인공 신경망으로 복잡한 함수 모델링
__11.1.1 단일층 신경망 요약
__11.1.2 다층 신경망 구조
__11.1.3 정방향 계산으로 신경망 활성화 출력 계산
11.2 손글씨 숫자 분류
__11.2.1 MNIST 데이터셋 구하기
__11.2.2 다층 퍼셉트론 구현
__11.2.3 신경망 훈련 루프 코딩
__11.2.4 신경망 모델의 성능 평가
11.3 인공 신경망 훈련
__11.3.1 손실 함수 계산
__11.3.2 역전파 알고리즘 이해
__11.3.3 역전파 알고리즘으로 신경망 훈련
11.4 신경망의 수렴
11.5 신경망 구현에 관한 몇 가지 첨언
11.6 요약
12장. 파이토치를 사용한 신경망 훈련
12.1 파이토치와 훈련 성능
__12.1.1 성능 문제
__12.1.2 파이토치란?
__12.1.3 파이토치 학습 방법
12.2 파이토치 처음 시작하기
__12.2.1 파이토치 설치
__12.2.2 파이토치에서 텐서 만들기
__12.2.3 텐서의 데이터 타입과 크기 조작
__12.2.4 텐서에 수학 연산 적용
__12.2.5 chunk( ), stack( ), cat( ) 함수
12.3 파이토치 입력 파이프라인 구축
__12.3.1 텐서에서 파이토치 DataLoader 만들기
__12.3.2 두 개의 텐서를 하나의 데이터셋으로 연결
__12.3.3 셔플, 배치, 반복
__12.3.4 로컬 디스크에 있는 파일에서 데이터셋 만들기
__12.3.5 torchvision.datasets 라이브러리에서 데이터셋 로드
12.4 파이토치로 신경망 모델 만들기
__12.4.1 파이토치 신경망 모듈(torch.nn)
__12.4.2 선형 회귀 모델 만들기
__12.4.3 torch.nn과 torch.optim 모듈로 모델 훈련하기
__12.4.4 붓꽃 데이터셋을 분류하는 다층 퍼셉트론 만들기
__12.4.5 테스트 데이터셋에서 모델 평가하기
__12.4.6 훈련된 모델 저장하고 로드하기
12.5 다층 신경망의 활성화 함수 선택
__12.5.1 로지스틱 함수 요약
__12.5.2 소프트맥스 함수를 사용한 다중 클래스 확률 예측
__12.5.3 하이퍼볼릭 탄젠트로 출력 범위 넓히기
__12.5.4 렐루 활성화 함수
12.6 요약
13장. 파이토치 구조 자세히 알아보기
13.1 파이토치의 주요 특징
13.2 파이토치의 계산 그래프
__13.2.1 계산 그래프 이해
__13.2.2 파이토치로 그래프 만들기
13.3 모델 파라미터를 저장하고 업데이트하기 위한 파이토치 텐서 객체
13.4 자동 미분으로 그레이디언트 계산
__13.4.1 훈련 가능한 변수에 대한 손실의 그레이디언트 계산
__13.4.2 자동 미분 이해하기
__13.4.3 적대 샘플
13.5 torch.nn 모듈을 사용하여 일반적인 아키텍처 구현하기
__13.5.1 nn.Sequential 기반의 모델 구현하기
__13.5.2 손실 함수 선택하기
__13.5.3 XOR 분류 문제 풀어 보기
__13.5.4 nn.Module로 유연성이 높은 모델 만들기
__13.5.5 파이토치에서 사용자 정의 층 만들기
13.6 프로젝트 1: 자동차 연비 예측하기
__13.6.1 특성 열 사용
__13.6.2 DNN 회귀 모델 훈련하기
13.7 프로젝트 2: MNIST 손글씨 숫자 분류하기
13.8 고수준 파이토치 API: 파이토치 라이트닝 소개
__13.8.1 파이토치 라이트닝 모델 준비하기
__13.8.2 라이트닝을 위한 데이터 로더 준비하기
__13.8.3 라이트닝 Trainer 클래스를 사용하여 모델 훈련하기
__13.8.4 텐서보드로 모델 평가하기
13.9 요약
14장. 심층 합성곱 신경망으로 이미지 분류
14.1 합성곱 신경망의 구성 요소
__14.1.1 CNN과 특성 계층 학습
__14.1.2 이산 합성곱 수행
__14.1.3 서브샘플링
14.2 기본 구성 요소를 사용하여 심층 합성곱 신경망 구성
__14.2.1 여러 개의 입력 또는 컬러 채널 다루기
__14.2.2 L2 규제와 드롭아웃으로 신경망 규제
__14.2.3 분류를 위한 손실 함수
14.3 파이토치를 사용하여 심층 합성곱 신경망 구현
__14.3.1 다층 CNN 구조
__14.3.2 데이터 적재와 전처리
__14.3.3 torch.nn 모듈을 사용하여 CNN 구현
14.4 합성곱 신경망을 사용하여 웃는 얼굴 분류
__14.4.1 CelebA 데이터셋 로드
__14.4.2 이미지 변환과 데이터 증식
__14.4.3 CNN 웃는 얼굴 분류기 훈련
14.5 요약
15장. 순환 신경망으로 순차 데이터 모델링
15.1 순차 데이터 소개
__15.1.1 순차 데이터 모델링: 순서를 고려한다
__15.1.2 순차 데이터 vs 시계열 데이터
__15.1.3 시퀀스 표현
__15.1.4 시퀀스 모델링의 종류
15.2 시퀀스 모델링을 위한 RNN
__15.2.1 RNN 반복 구조 이해
__15.2.2 RNN의 활성화 출력 계산
__15.2.3 은닉 순환과 출력 순환
__15.2.4 긴 시퀀스 학습의 어려움
__15.2.5 LSTM 셀
15.3 파이토치로 시퀀스 모델링을 위한 RNN 구현
__15.3.1 첫 번째 프로젝트: IMDb 영화 리뷰의 감성 분석
__15.3.2 두 번째 프로젝트: 텐서플로로 글자 단위 언어 모델 구현
15.4 요약
16장. 트랜스포머: 어텐션 메커니즘을 통한 자연어 처리 성능 향상
16.1 어텐션 메커니즘이 추가된 RNN
__16.1.1 RNN의 정보 검색을 돕는 어텐션
__16.1.2 RNN을 위한 원본 어텐션 메커니즘
__16.1.3 양방향 RNN으로 입력 처리하기
__16.1.4 문맥 벡터에서 출력 생성하기
__16.1.5 어텐션 가중치 계산하기
16.2 셀프 어텐션 메커니즘 소개
__16.2.1 기본적인 형태의 셀프 어텐션
__16.2.2 훈련 가능한 셀프 어텐션 메커니즘: 스케일드 점곱 어텐션
16.3 어텐션이 필요한 전부다: 원본 트랜스포머 아키텍처
__16.3.1 멀티 헤드 어텐션으로 문맥 임베딩 인코딩하기
__16.3.2 언어 모델 학습: 디코더와 마스크드 멀티 헤드 어텐션
__16.3.3 구현 세부 사항: 위치 인코딩 및 층 정규화
16.4 레이블이 없는 데이터를 활용하여 대규모 언어 모델 구축
__16.4.1 트랜스포머 모델 사전 훈련 및 미세 튜닝
__16.4.2 GPT로 레이블이 없는 데이터 활용하기
__16.4.3 GPT-2를 사용하여 새로운 텍스트 생성
__16.4.4 BERT를 통한 양방향 사전 훈련
__16.4.5 두 장점을 합친 BART
16.5 파이토치에서 BERT 모델 미세 튜닝하기
__16.5.1 IMDb 영화 리뷰 데이터셋 로드
__16.5.2 데이터셋 토큰화 715
__16.5.3 사전 훈련된 BERT 모델 로드 및 미세 튜닝하기
__16.5.4 트레이너 API를 사용하여 트랜스포머를 간편하게 미세 튜닝하기
16.6 요약
17장. 새로운 데이터 합성을 위한 생성적 적대 신경망
17.1 생성적 적대 신경망 소개
__17.1.1 오토인코더
__17.1.2 새로운 데이터 합성을 위한 생성 모델
__17.1.3 GAN으로 새로운 샘플 생성
__17.1.4 GAN의 생성자와 판별자 손실 함수 이해
17.2 밑바닥부터 GAN 모델 구현
__17.2.1 구글 코랩에서 GAN 모델 훈련
__17.2.2 생성자와 판별자 신경망 구현
__17.2.3 훈련 데이터셋 정의
__17.2.4 GAN 모델 훈련하기
17.3 합성곱 GAN과 바서슈타인 GAN으로 합성 이미지 품질 높이기
__17.3.1 전치 합성곱
__17.3.2 배치 정규화
__17.3.3 생성자와 판별자 구현
__17.3.4 두 분포 사이의 거리 측정
__17.3.5 GAN에 EM 거리 사용
__17.3.6 그레이디언트 페널티
__17.3.7 WGAN-GP로 DCGAN 모델 훈련
__17.3.8 모드 붕괴
17.4 다른 GAN 애플리케이션
17.5 요약
18장. 그래프 구조 데이터의 의존성 감지를 위한 그래프 신경망
18.1 그래프 데이터 소개
__18.1.1 비유향 그래프
__18.1.2 유향 그래프
__18.1.3 레이블 그래프
__18.1.4 분자를 그래프로 표현하기
18.2 그래프 합성곱의 이해
__18.2.1 그래프 합성곱의 사용 동기
__18.2.2 기본 그래프 합성곱 구현
18.3 파이토치에서 GNN을 밑바닥부터 구현하기
__18.3.1 NodeNetwork 모델 정의하기
__18.3.2 NodeNetwork의 그래프 합성곱 층 만들기
__18.3.3 다양한 그래프 크기를 처리하기 위해 전역 풀링 층 추가하기
__18.3.4 데이터 로더 준비
__18.3.5 노드 네트워크를 사용하여 예측하기
18.4 파이토치 지오메트릭 라이브러리를 사용하여 GNN 구현하기
18.5 기타 GNN 층 및 최근 개발 사항
__18.5.1 스펙트럼 그래프 합성곱
__18.5.2 풀링
__18.5.3 정규화
__18.5.4 그 외 고급 그래프 신경망
18.6 요약
19장. 강화 학습으로 복잡한 환경에서 의사 결정
19.1 경험에서 배운다
__19.1.1 강화 학습 이해
__19.1.2 강화 학습 시스템의 에이전트-환경 인터페이스 정의
19.2 강화 학습의 기초 이론
__19.2.1 마르코프 결정 과정
__19.2.2 마르코프 결정 과정의 수학 공식
__19.2.3 강화 학습 용어: 대가, 정책, 가치 함수
__19.2.4 벨먼 방정식을 사용한 동적 계획법
19.3 강화 학습 알고리즘
__19.3.1 동적 계획법
__19.3.2 몬테카를로를 사용한 강화 학습
__19.3.3 시간 차 학습
19.4 첫 번째 강화 학습 알고리즘 구현
__19.4.1 OpenAI 짐 툴킷 소개
__19.4.2 Q-러닝으로 그리드 월드 문제 풀기
19.5 심층 Q-러닝
__19.5.1 Q-러닝 알고리즘에 따라 DQN 모델 훈련
__19.5.2 심층 Q-러닝 알고리즘 구현
19.6 전체 요약
상품필수 정보
도서명 | 머신 러닝 교과서- 파이토치 편 | ||
---|---|---|---|
저자,출판사 | 세바스찬라시카 유시 류 바히드미자리리 / 길벗 | ||
크기 | 183x235x36 | ||
쪽수 | 876 | ||
제품구성 | 0 | ||
발행일 | 2023-11-30 | ||
목차 또는 책소개 | 상세설명참조 |
배송안내
- 배송비 : 기본배송료는 2,500원 입니다. (도서,산간,오지 일부지역은 배송비가 추가될 수 있습니다)
- 본 상품의 평균 배송일은 3일입니다.(입금 확인 후) 설치 상품의 경우 다소 늦어질수 있습니다.[배송예정일은 주문시점(주문순서)에 따른 유동성이 발생하므로 평균 배송일과는 차이가 발생할 수 있습니다.]
- 본 상품의 배송 가능일은 3일 입니다. 배송 가능일이란 본 상품을 주문 하신 고객님들께 상품 배송이 가능한 기간을 의미합니다. (단, 연휴 및 공휴일은 기간 계산시 제외하며 현금 주문일 경우 입금일 기준 입니다.)
교환 및 반품안내
- 상품 택(tag)제거 또는 개봉으로 상품 가치 훼손 시에는 상품수령후 7일 이내라도 교환 및 반품이 불가능합니다.
- 저단가 상품, 일부 특가 상품은 고객 변심에 의한 교환, 반품은 고객께서 배송비를 부담하셔야 합니다(제품의 하자,배송오류는 제외)
- 일부 상품은 신모델 출시, 부품가격 변동 등 제조사 사정으로 가격이 변동될 수 있습니다.
- 신발의 경우, 실외에서 착화하였거나 사용흔적이 있는 경우에는 교환/반품 기간내라도 교환 및 반품이 불가능 합니다.
- 수제화 중 개별 주문제작상품(굽높이,발볼,사이즈 변경)의 경우에는 제작완료, 인수 후에는 교환/반품기간내라도 교환 및 반품이 불가능 합니다.
- 수입,명품 제품의 경우, 제품 및 본 상품의 박스 훼손, 분실 등으로 인한 상품 가치 훼손 시 교환 및 반품이 불가능 하오니, 양해 바랍니다.
- 일부 특가 상품의 경우, 인수 후에는 제품 하자나 오배송의 경우를 제외한 고객님의 단순변심에 의한 교환, 반품이 불가능할 수 있사오니, 각 상품의 상품상세정보를 꼭 참조하십시오.
환불안내
AS안내
- 소비자분쟁해결 기준(공정거래위원회 고시)에 따라 피해를 보상받을 수 있습니다.
- A/S는 판매자에게 문의하시기 바랍니다.
이미지 확대보기
머신 러닝 교과서- 파이토치 편
비밀번호 인증
글 작성시 설정한 비밀번호를 입력해 주세요.
확인장바구니 담기
상품이 장바구니에 담겼습니다.
바로 확인하시겠습니까?
찜 리스트 담기
상품이 찜 리스트에 담겼습니다.
바로 확인하시겠습니까?