현재 위치
홈상품상세정보
*도서소개
*출판사도서소개
*목차
1.1 데이터 구조와 연산
__1.1.1 행렬 연산
__1.1.2 벡터 연산
__1.1.3 행렬-벡터 곱셈
1.2 기본 공간
__1.2.1 열공간
__1.2.2 영공간
1.3 고유벡터와 고유값
요약
CHAPTER 2 확률 기초
2.1 사건과 확률
2.2 조건부 확률
2.3 확률 변수
2.4 기댓값
2.5 분산
2.6 베이즈 정리
2.7 엔트로피, 교차 엔트로피 및 KL 발산
2.8 연속 확률 분포
요약 60
CHAPTER 3 신경망
3.1 지능형 머신 구축
3.2 전통적인 컴퓨터 프로그램의 한계
3.3 머신러닝 동작 원리
3.4 뉴런
3.5 뉴런으로 나타낸 선형 퍼셉트론
3.6 순방향 신경망
3.7 선형 뉴런과 그 한계
3.8 시그모이드 뉴런, Tanh 뉴런, ReLU 뉴런
3.9 소프트맥스 출력 레이어
요약
CHAPTER 4 순방향 신경망 훈련
4.1 패스트푸드 문제
4.2 경사하강법
4.3 델타 규칙과 학습률
4.4 시그모이드 뉴런을 이용한 경사하강법
4.5 역전파 알고리즘
4.6 확률적 경사하강법과 미니배치 경사하강법
4.7 테스트셋, 검증셋, 과적합
4.8 심층 신경망 과적합 방지
CHAPTER 5 PyTorch 기반 신경망 구현
5.1 PyTorch 소개
5.2 PyTorch 설치
5.3 PyTorch 텐서
__5.3.1 텐서 초기화
__5.3.2 텐서 속성
__5.3.3 텐서 연산
5.4 PyTorch에서의 경사
5.5 PyTorch nn 모듈
5.6 PyTorch 데이터셋과 데이터 로더
5.7 PyTorch에서 MNIST 분류기 구축
요약
CHAPTER 6 경사하강법
6.1 경사하강법의 도전 과제
6.2 심층 신경망 오차 표면의 극소점
6.3 모델 식별성
6.4 심층 신경망에서 가짜 극소점이 미치는 영향
6.5 오차 표면의 평평한 영역
6.6 경사 방향이 잘못된 경우
6.7 모멘텀 기반 최적화
6.8 간략한 이차 근사 방법 개요
6.9 학습률 적응
__6.9.1 AdaGrad: 경사 누적 알고리즘
__6.9.2 RMSProp: 경사 지수 가중 이동 평균
__6.9.3 Adam: 모멘텀과 RMSProp의 결합
6.10 옵티마이저 선택의 철학
요약
CHAPTER 7 합성곱 신경망
7.1 인간 시각에서의 뉴런
7.2 피처 선택의 한계
7.3 기본 심층 신경망의 확장 한계
7.4 필터와 피처 맵
7.5 합성곱 레이어에 대한 상세 설명
7.6 맥스 풀링
7.7 합성곱 신경망 아키텍처 상세 설명
7.8 합성곱 신경망으로 MNIST 문제 해결
7.9 이미지 전처리 파이프라인으로 더욱 강건한 모델 지원
7.10 배치 정규화를 통한 훈련 가속화
7.11 메모리 제약이 있는 학습 작업을 위한 그룹 정규화
7.12 CIFAR-10을 위한 합성곱 신경망 구축
7.13 합성곱 신경망에서 학습 시각화
7.14 복잡한 심층 신경망을 위한 잔차 학습과 스킵 연결
7.15 인간을 초월한 시각을 지닌 잔차 신경망 구축
7.16 합성곱 필터를 활용한 예술 스타일 재현
7.17 다른 문제 도메인에 적용되는 합성곱 필터 학습
요약
CHAPTER 8 임베딩과 표현 학습
8.1 저차원 표현 학습
8.2 주성분 분석
8.3 오토인코더 아키텍처의 필요성
8.4 PyTorch에서 오토인코더 구현
8.5 노이즈에 강한 표현을 위한 디노이징
8.6 오토인코더에서의 희소성
8.7 입력 벡터보다 컨텍스트에서 더 많은 정보를 제공하는 경우
8.8 Word2Vec 프레임워크
8.9 Skip-Gram 아키텍처 구현
요약
CHAPTER 9 시퀀스 분석 모델
9.1 가변 길이 입력 분석
9.2 신경망 N-Gram으로 seq2seq 처리
9.3 품사 태거 구현
9.4 의존성 파싱과 SyntaxNet
9.5 빔 서치와 전역 정규화
9.6 스테이트풀 딥러닝 모델 사례
9.7 순환 신경망
9.8 경사 소실의 문제점
9.9 장단기 메모리 유닛
9.10 RNN 모델을 위한 PyTorch 기본 요소
9.11 감정 분석 모델 구현
9.12 순환 신경망으로 seq2seq 작업 해결
9.13 어텐션으로 순환 신경망 증강
9.14 번역 신경망 분석
9.15 셀프 어텐션과 트랜스포머
요약
CHAPTER 10 생성 모델
10.1 생성적 적대 신경망
10.2 변이형 오토인코더
10.3 변이형 오토인코더 구현
10.4 점수 기반 생성 모델
10.5 디노이징 오토인코더와 점수 매칭
요약
CHAPTER 11 해석 가능성 방법론
11.1 개요
11.2 결정 트리와 트리 기반 알고리즘
11.3 선형 회귀
11.4 피처 중요도 평가 방법
__11.4.1 순열 피처 중요도
__11.4.2 부분 의존도 그래프
11.5 추출적 합리화
11.6 LIME
11.7 SHAP
요약
CHAPTER 12 메모리 증강 신경망
12.1 신경망 튜링 머신
12.2 어텐션 기반 메모리 접근
12.3 NTM 메모리 주소 지정 메커니즘
12.4 미분 가능 신경망 컴퓨터
12.5 DNC에서의 간섭 없는 쓰기
12.6 DNC 메모리 재사용
12.7 DNC 쓰기의 시간적 연결
12.8 DNC 읽기 헤드 이해
12.9 DNC 컨트롤러 신경망
12.10 동작 중인 DNC 시각화
12.11 PyTorch에서 DNC 구현하기
12.12 DNC에 독해를 가르치기
요약
CHAPTER 13 강화 학습
13.1 Atari 게임을 마스터한 심층 강화 학습
13.2 강화 학습 소개
13.3 마르코프 결정 과정
__13.3.1 정책
__13.3.2 미래 보상
__13.3.3 할인된 미래 보상
13.4 탐색과 활용 비교
__13.4.1 ??-그리디
__13.4.2 어닐링된 ??-그리디
13.5 정책 학습과 가치 학습 비교
13.6 정책 경사를 이용하는 폴 카트
__13.6.1 OpenAI Gym
__13.6.2 에이전트 만들기
__13.6.3 모델 및 최적화기 구축
__13.6.4 샘플링 액션
__13.6.5 이력 추적
__13.6.6 정책 경사 main 함수
__13.6.7 폴 카트에서의 PGAgent 성능
13.7 신뢰 영역 정책 최적화
13.8 근접 정책 최적화
13.9 Q러닝과 DQN
__13.9.1 벨만 방정식
__13.9.2 가치 이터레이션의 문제
__13.9.3 Q함수 근사화하기
__13.9.4 DQN
__13.9.5 DQN 훈련하기
__13.9.6 학습 안정성
__13.9.7 타깃 Q네트워크
__13.9.8 경험 리플레이
__13.9.9 Q함수에서 정책으로
__13.9.10 DQN과 마르코프 가정
__13.9.11 마르코프 가정에 대한 DQN의 해법
__13.9.12 DQN으로 Breakout 플레이
__13.9.13 아키텍처 구축
__13.9.14 프레임 스태킹
__13.9.15 훈련 연산 설정
__13.9.16 타깃 Q네트워크 업데이트
__13.9.17 경험 리플레이 구현
__13.9.18 DQN 메인 루프
__13.9.19 Breakout에 대한 DQNAgent 결과
13.10 DQN의 개선과 그 이상의 발전
__13.10.1 심층 순환 Q네트워크
__13.10.2 비동기 우위 액터 크리틱 에이전트
__13.10.3 비지도 강화 및 보조 학습
요약
상품필수 정보
도서명 | 딥러닝의 정석 | ||
---|---|---|---|
저자,출판사 | 니틴 부두마 니킬 부두마 조 파파 / 한빛미디어 | ||
크기 | 183x235x30 | ||
쪽수 | 428 | ||
제품구성 | 0 | ||
발행일 | 2024-02-02 | ||
목차 또는 책소개 | 상세설명참조 |
배송안내
- 배송비 : 기본배송료는 2,500원 입니다. (도서,산간,오지 일부지역은 배송비가 추가될 수 있습니다)
- 본 상품의 평균 배송일은 3일입니다.(입금 확인 후) 설치 상품의 경우 다소 늦어질수 있습니다.[배송예정일은 주문시점(주문순서)에 따른 유동성이 발생하므로 평균 배송일과는 차이가 발생할 수 있습니다.]
- 본 상품의 배송 가능일은 3일 입니다. 배송 가능일이란 본 상품을 주문 하신 고객님들께 상품 배송이 가능한 기간을 의미합니다. (단, 연휴 및 공휴일은 기간 계산시 제외하며 현금 주문일 경우 입금일 기준 입니다.)
교환 및 반품안내
- 상품 택(tag)제거 또는 개봉으로 상품 가치 훼손 시에는 상품수령후 7일 이내라도 교환 및 반품이 불가능합니다.
- 저단가 상품, 일부 특가 상품은 고객 변심에 의한 교환, 반품은 고객께서 배송비를 부담하셔야 합니다(제품의 하자,배송오류는 제외)
- 일부 상품은 신모델 출시, 부품가격 변동 등 제조사 사정으로 가격이 변동될 수 있습니다.
- 신발의 경우, 실외에서 착화하였거나 사용흔적이 있는 경우에는 교환/반품 기간내라도 교환 및 반품이 불가능 합니다.
- 수제화 중 개별 주문제작상품(굽높이,발볼,사이즈 변경)의 경우에는 제작완료, 인수 후에는 교환/반품기간내라도 교환 및 반품이 불가능 합니다.
- 수입,명품 제품의 경우, 제품 및 본 상품의 박스 훼손, 분실 등으로 인한 상품 가치 훼손 시 교환 및 반품이 불가능 하오니, 양해 바랍니다.
- 일부 특가 상품의 경우, 인수 후에는 제품 하자나 오배송의 경우를 제외한 고객님의 단순변심에 의한 교환, 반품이 불가능할 수 있사오니, 각 상품의 상품상세정보를 꼭 참조하십시오.
환불안내
AS안내
- 소비자분쟁해결 기준(공정거래위원회 고시)에 따라 피해를 보상받을 수 있습니다.
- A/S는 판매자에게 문의하시기 바랍니다.
이미지 확대보기
딥러닝의 정석
비밀번호 인증
글 작성시 설정한 비밀번호를 입력해 주세요.
확인장바구니 담기
상품이 장바구니에 담겼습니다.
바로 확인하시겠습니까?
찜 리스트 담기
상품이 찜 리스트에 담겼습니다.
바로 확인하시겠습니까?