이벤트 배너 항공학교 교재구매

전체 카테고리

추천 메뉴

공지사항


현재 위치

러닝 레이

공유
SNS 공유하기
  • 페이스북 공유
    페이스북
  • 트위터 공유
    트위터
  • 핀터레스트 공유
    핀터레스트
  • 카카오스토리 공유
    카카오스토리
  • 정가
    25,000
  • 판매가
    22,500
  • 구매제한
    최소 1개
  • 구매혜택

    할인 :

    적립 마일리지 :

  • 배송비
    0원 조건별배송
    금액별배송비
    0원 이상 ~ 18,000원 미만 2,500원
    18,000원 이상 0원

    배송비 계산 기준 : 판매가 + 옵션가 + 추가상품가 + 텍스트옵션가 - 상품할인가 - 상품쿠폰할인가

    택배  /  주문시결제(선결제)
    방문 수령지 : 경기도 파주시 산남로 5-84 (산남동) 디엠도서유통
  • 상품코드
    1000164975
  • 자체상품코드
    9791169211949
  • 브랜드
    한빛미디어
  • 제조사
    한빛미디어
  • 원산지
    상품상세참고
  • 제조일
    2024-01-29
러닝 레이
0
  • 총 상품금액
  • 총 할인금액
  • 총 합계금액

상품상세정보

*도서소개

텐서플로, 파이토치의 속도를 높이는 분산 라이브러리파이썬 프로젝트를 쉽게 확장하는 오픈 소스 분산 컴퓨팅 프레임워크 레이를 시작하자. 이 책은 파이썬 프로그래머와 데이터 엔지니어, 데이터 과학자가 로컬에서 레이를 활용하고 컴퓨팅 클러스터를 구성하는 방법을 소개한다. 레이를 이용하여 대규모 머신러닝 프로그램을 구조화하고 실행하는 방법을 익혀보자. 레이가 머신러닝에서 어떤 위치를 차지하고 있으며 다른 도구와 어떻게 밀접하게 통합되는지 이해할 수 있다. 레이를 사용하면 복잡하게만 느껴지던 분산 컴퓨팅이 훨씬 쉬워질 것이다.

*출판사도서소개

파이썬에 쉽고 빠른 병렬화를 구현하는 레이를 만나다.머신러닝 시스템은 훈련에 많은 양의 데이터를 사용하며 모델의 크기는 점점 커지고 있다. AI 시스템에 필요한 연산의 수가 초당 1000조 회를 넘어가는 시점에서 분산 컴퓨팅은 절대적으로 필요하다. 레이는 분산 컴퓨팅 전용 파이썬 라이브러리로, 간단한 코드 변경으로 빠른 병렬화와 확장 가능한 분산 처리를 지원한다. 소규모 작업부터 대규모 클러스터까지 다양한 규모에서 높은 성능을 제공하며, API의 범위도 유연해 다양한 상황에 사용할 수 있다. 특히 텐서플로나 파이토치 같은 라이브러리와의 통합을 지원해 데이터 과학자에게도 유용하다.이 책은 레이를 사용해 강력한 분산 애플리케이션과 모델을 구축하는 방법을 소개한다. 독자가 직접 흥미로운 프로젝트를 구현하며, 레이를 구성하는 각 라이브러리의 기능과 적용 분야를 알 수 있도록 구성에 더 복잡한 상황에 레이를 적용할 자신감을 심어준다. 이 책을 통해 레이의 잠재력을 발견해 병렬화를 구현해보자.대상 독자- 데이터 과학과 머신러닝에 레이를 사용하려는 데이터 관련 종사자- 파이썬으로 분산 컴퓨팅을 구현하는 방법이 궁금한 개발자배우는 내용- 하이퍼파라미터 최적화를 시행하는 레이 튠- 강화학습을 수행하는 레이 RLlib- 분산 훈련을 지원하는 레이 트레인- 대용량 데이터를 처리하는 레이 데이터셋- 머신러닝 애플리케이션을 구축하는 레이 AIR이 책의 구성1장부터 3장까지는 분산 파이썬 프레임워크로서의 레이를 살펴보며 실질적인 예시를 통해 기본적인 개념을 배웁니다. 4장부터 10장까지는 레이 RLlib, 레이 튠, 레이 데이터셋, 레이 트레인 등 레이 생태계를 구성하는 하이레벨 라이브러리를 알아보고, 이를 사용해 애플리케이션을 만드는 방법을 배웁니다. 마지막 장에서는 레이의 생태계에 대한 종합적인 개요와 더 나아가는 방법을 안내합니다.옮긴이의 말레이는 소프트웨어 레이어뿐 아니라 인프라 레이어까지도 빠르게 통합을 이루어내는 가장 훌륭한 분산 시스템 추상화입니다. 이 책을 읽으시는 여러분도 제가 발견한 레이의 잠재력과 가능성을 만나길 바라며, 지금까지 풀기 힘들었던 문제를 해결하는 계기가 되었으면 합니다.김완수

*목차

Chapter 1 레이 살펴보기

1.1 레이는 무엇인가?
_1.1.1 레이가 추구하는 목적
_1.1.2 레이의 디자인 철학
_1.1.3 레이의 3가지 계층: 코어, 라이브러리, 생태계
1.2 분산 컴퓨팅 프레임워크
1.3 데이터 과학 라이브러리
_1.3.1 데이터 과학 워크플로
_1.3.2 데이터 처리
_1.3.3 모델 학습
_1.3.4 하이퍼파라미터 튜닝
_1.3.5 모델 서빙
1.4 성장하는 생태계
1.5 요약

Chapter 2 레이 코어로 시작하는 분산 컴퓨팅

2.1 레이 코어 소개
_2.1.1 레이 API를 활용한 첫 번째 예시
_2.1.2 레이 API 개요
2.2 레이 시스템 컴포넌트
_2.2.1 노드에서 태스크 스케줄링 및 실행
_2.2.2 헤드 노드
_2.2.3 분산된 스케줄링과 실행
2.3 레이를 사용한 간단한 맵리듀스 예시
_2.3.1 매핑과 셔플
_2.3.2 단어 수 축소(리듀스 단계)
2.4 요약

Chapter 3 분산 애플리케이션 개발

3.1 강화학습 소개
3.2 간단한 미로 문제 설정
3.3 시뮬레이션 구현
3.4 강화학습 모델 훈련
3.5 레이 분산 애플리케이션 구축
3.6 강화학습 용어 요약
3.7 요약

Chapter 4 레이 RLlib을 활용한 강화학습

4.1 RLlib 개요
4.2 RLlib 시작하기
_4.2.1 Gym 환경 구축
_4.2.2 RLlib CLI
_4.2.3 RLlib 파이썬 API
4.3 RLlib 실험 구성
_4.3.1 리소스 구성
_4.3.2 롤아웃 워커 구성
_4.3.3 환경 구성
4.4 RLlib 환경
_4.4.1 RLlib 환경 개요
_4.4.2 다중 에이전트
_4.4.3 정책 서버와 클라이언트 작동
4.5 고급 개념
_4.5.1 고급 환경 구축
_4.5.2 커리큘럼 학습 적용
_4.5.3 오프라인 데이터 작업
_4.5.4 다른 고급 주제
4.6 요약

Chapter 5 레이 튠을 활용한 하이퍼파라미터 최적화

5.1 하이퍼파라미터 튜닝
_5.1.1 레이를 사용한 랜덤 서치
_5.1.2 HPO가 어려운 이유
5.2 튠 소개
_5.2.1 튠의 작동 방식
_5.2.2 튠의 구성과 실행
5.3 튠을 활용한 머신러닝
_5.3.1 튠을 활용한 RLlib
_5.3.2 케라스 모델 튜닝
5.4 요약

Chapter 6 레이 데이터셋을 활용한 데이터 분산 처리

6.1 레이 데이터셋
_6.1.1 레이 데이터셋 기초
_6.1.2 레이 데이터셋 연산
_6.1.3 데이터셋 파이프라인
_6.1.4 예시: 병렬 분류기 복사본 훈련
6.2 외부 라이브러리 통합
6.3 머신러닝 파이프라인 구축
6.4 요약

Chapter 7 레이 트레인을 활용한 분산 모델 훈련

7.1 분산 모델 훈련의 기초
7.2 예시를 통한 레이 트레인 소개
_7.2.1 뉴욕시 택시 승차 시 팁 예측
_7.2.2 로드, 전처리, 피처화
_7.2.3 딥러닝 모델 정의
_7.2.4 레이 트레인을 활용한 모델 훈련
_7.2.5 분산 배치 추론
7.3 레이 트레인의 트레이너
_7.3.1 레이 트레인으로 마이그레이션
_7.3.2 트레이너 스케일 아웃
_7.3.3 레이 트레인을 활용한 전처리
_7.3.4 트레이너와 레이 튠의 통합
_7.3.5 콜백을 사용한 학습 모니터링
7.4 요약

Chapter 8 레이 서브를 활용한 온라인 추론

8.1 온라인 추론의 주요 특징
_8.1.1 계산 집약적 머신러닝 모델
_8.1.2 고립된 상태에서 유용하지 않은 머신러닝 모델
8.2 레이 서브 소개
_8.2.1 아키텍처 개요
_8.2.2 기본 HTTP 엔드포인트 정의
_8.2.3 확장 및 리소스 할당
_8.2.4 요청 배치 처리
_8.2.5 멀티모델 추론 그래프
8.3 엔드 투 엔드 예시: 자연어 처리 기반 API 구축
_8.3.1 콘텐츠 가져오기 및 전처리
_8.3.2 NLP 모델
_8.3.3 HTTP 처리 및 드라이버 로직
_8.3.4 통합
8.4 요약

Chapter 9 레이 클러스터를 활용한 스케일링

9.1 수동으로 레이 클러스터 생성
9.2 쿠버네티스에 배포
_9.2.1 첫 번째 쿠브레이 클러스터 설정
_9.2.2 쿠브레이 클러스터와 상호작용
_9.2.3 쿠브레이 노출
_9.2.4 쿠브레이 구성
_9.2.5 쿠브레이 로깅 구성
9.3 레이 클러스터 런처
_9.3.1 레이 클러스터 구성
_9.3.2 클러스터 런처 CLI
_9.3.3 레이 클러스터와 상호작용
9.4 클라우드 클러스터
_9.4.1 AWS
_9.4.2 기타 클라우드 제공자
9.5 오토스케일링
9.6 요약

Chapter 10 레이 AIR로 구성하는 데이터 과학 워크플로

10.1 AIR를 사용하는 이유
10.2 예시로 살펴보는 AIR의 핵심
_10.2.1 레이 데이터셋과 전처리기
_10.2.2 트레이너
_10.2.3 튜너와 체크포인트
_10.2.4 배치 예측기
_10.2.5 배포
10.3 AIR에 적합한 워크로드
_10.3.1 AIR 워크로드 실행
_10.3.2 AIR 메모리 관리
_10.3.3 AIR 고장 모델
_10.3.4 AIR 워크로드 오토스케일링
10.4 요약

Chapter 11 레이 생태계와 그 너머

11.1 성장하는 생태계
_11.1.1 데이터 로드와 처리
_11.1.2 모델 훈련
_11.1.3 모델 서빙
_11.1.4 커스텀 통합
_11.1.5 레이 통합 개요
11.2 레이 외 시스템
_11.2.1 분산 파이썬 프레임워크
_11.2.2 레이 AIR와 더 넓은 생태계
_11.2.3 AIR를 머신러닝 플랫폼에 통합하는 방법
11.3 앞으로 살펴볼만한 주제
11.4 요약

상품필수 정보

도서명 러닝 레이
저자,출판사 막스 펌펄라 에드워드 옥스 리처드 리우 / 한빛미디어
크기 183x235x12
쪽수 292
제품구성 0
발행일 2024-01-29
목차 또는 책소개 상세설명참조

배송안내

- 배송비 : 기본배송료는 2,500원 입니다. (도서,산간,오지 일부지역은 배송비가 추가될 수 있습니다) 

- 본 상품의 평균 배송일은 3일입니다.(입금 확인 후) 설치 상품의 경우 다소 늦어질수 있습니다.[배송예정일은 주문시점(주문순서)에 따른 유동성이 발생하므로 평균 배송일과는 차이가 발생할 수 있습니다.]

- 본 상품의 배송 가능일은 3일 입니다. 배송 가능일이란 본 상품을 주문 하신 고객님들께 상품 배송이 가능한 기간을 의미합니다. (단, 연휴 및 공휴일은 기간 계산시 제외하며 현금 주문일 경우 입금일 기준 입니다.)

교환 및 반품안내

- 상품 택(tag)제거 또는 개봉으로 상품 가치 훼손 시에는 상품수령후 7일 이내라도 교환 및 반품이 불가능합니다.

- 저단가 상품, 일부 특가 상품은 고객 변심에 의한 교환, 반품은 고객께서 배송비를 부담하셔야 합니다(제품의 하자,배송오류는 제외)

- 일부 상품은 신모델 출시, 부품가격 변동 등 제조사 사정으로 가격이 변동될 수 있습니다.

- 신발의 경우, 실외에서 착화하였거나 사용흔적이 있는 경우에는 교환/반품 기간내라도 교환 및 반품이 불가능 합니다.

- 수제화 중 개별 주문제작상품(굽높이,발볼,사이즈 변경)의 경우에는 제작완료, 인수 후에는 교환/반품기간내라도 교환 및 반품이 불가능 합니다. 

- 수입,명품 제품의 경우, 제품 및 본 상품의 박스 훼손, 분실 등으로 인한 상품 가치 훼손 시 교환 및 반품이 불가능 하오니, 양해 바랍니다.

- 일부 특가 상품의 경우, 인수 후에는 제품 하자나 오배송의 경우를 제외한 고객님의 단순변심에 의한 교환, 반품이 불가능할 수 있사오니, 각 상품의 상품상세정보를 꼭 참조하십시오. 

환불안내

- 상품 청약철회 가능기간은 상품 수령일로 부터 7일 이내 입니다.

AS안내

- 소비자분쟁해결 기준(공정거래위원회 고시)에 따라 피해를 보상받을 수 있습니다.

- A/S는 판매자에게 문의하시기 바랍니다.

이미지 확대보기

러닝 레이

러닝 레이
러닝 레이

비밀번호 인증

글 작성시 설정한 비밀번호를 입력해 주세요.

확인

장바구니 담기

상품이 장바구니에 담겼습니다.
바로 확인하시겠습니까?

찜 리스트 담기

상품이 찜 리스트에 담겼습니다.
바로 확인하시겠습니까?

광고
최근본상품
0/0
상단으로 이동
 
러닝 레이
22,500원 2,500원 주문시결제(선결제)
러닝 레이 0
  • 상품가격 0원
  • 할인금액 0원
  • 총 결제 예정금액 0원