이벤트 배너 항공학교 교재구매

전체 카테고리

추천 메뉴

공지사항


현재 위치

AI를 위한 필수 수학

공유
SNS 공유하기
  • 페이스북 공유
    페이스북
  • 트위터 공유
    트위터
  • 핀터레스트 공유
    핀터레스트
  • 카카오스토리 공유
    카카오스토리
  • 정가
    45,000
  • 판매가
    40,500
  • 구매제한
    최소 1개
  • 구매혜택

    할인 :

    적립 마일리지 :

  • 배송비
    0원 조건별배송
    금액별배송비
    0원 이상 ~ 18,000원 미만 2,500원
    18,000원 이상 0원

    배송비 계산 기준 : 판매가 + 옵션가 + 추가상품가 + 텍스트옵션가 - 상품할인가 - 상품쿠폰할인가

    택배  /  주문시결제(선결제)
    방문 수령지 : 경기도 파주시 산남로 5-84 (산남동) 디엠도서유통
  • 상품코드
    1000165169
  • 자체상품코드
    9791169212588
  • 제조사
    한빛미디어
  • 원산지
    상품상세참고
AI를 위한 필수 수학
0
  • 총 상품금액
  • 총 할인금액
  • 총 합계금액

상품상세정보

*도서소개

AI의 시작은 수학이다!
정리/증명/코딩은 빼고, 적용 사례에 집중한 수학 가이드

이 책은 복잡한 공식과 방대한 양에 압도되어 수학 공부를 포기하는 사람들을 위해 만들어졌다. AI 시스템 구축에 필수적인 통계학, 선형 대수학, 미적분학 등 기본 수학 개념을 쉽게 풀어내어, 이해하기 쉽게 설명한다. 어려운 정리나 증명, 코딩은 최소화하고, 각 개념이 AI 애플리케이션에 어떻게 적용되는지를 실제 사례를 통해 보여준다. 이를 통해 수학적 세부 사항보다는 수학 개념 간의 관계와 전체적인 그림을 그리는 데 집중할 수 있도록 한다.

또한, AI의 어떤 부분에서 어떤 수학이 왜 사용되는지를 명확하게 설명하며, 단순한 이론 나열을 넘어 실제 AI 시스템에서 수학이 어떻게 활용되는지를 구체적인 예시를 통해 알기 쉽게 설명한다. 머신러닝 알고리즘의 기본 원리, 신경망의 작동 방식, 자연어 처리의 수학적 기반 등 AI의 핵심 분야별로 관련 수학 개념을 소개하여 독자들이 AI의 작동 원리를 체계적으로 이해할 수 있도록 돕는다. AI에 관심 있는 학생이나 개발자, 연구자는 물론, AI 기술을 비즈니스에 적용하고자 하는 경영진도 이 책으로 통찰력을 얻을 수 있을 것이다.


*출판사도서소개

인공지능 시대의 필수적인 수학 개념을 쉽고 직관적으로 설명한 안내서!

『AI를 위한 필수 수학』은 인공지능과 데이터 과학의 기초가 되는 수학적 원리를 누구나 이해할 수 있도록 설명합니다. 이 책은 수학 공식과 증명에 집중하기보다는, 인공지능 프로젝트에서 실제로 수학이 어떻게 적용되는지를 다양한 사례와 함께 다루며, 직관적 이해를 돕습니다.

특히, 그래프 이론과 운용 과학을 비롯한 상대적으로 자료가 부족한 분야에 대한 내용을 심도 있게 다루어, 실무에 바로 적용할 수 있는 아이디어를 제공합니다. 인공지능 학습의 시작을 계획하는 분들뿐만 아니라, 관련 분야의 실무자들에게도 유용한 자료가 될 것입니다.


*목차

Chapter 1 인공지능 수학을 왜 배워야 할까?

1.1 인공지능이란 무엇일까?
1.2 인공지능이 각광받는 이유는 무엇일까?
1.3 인공지능은 무엇을 할 수 있을까?
1.4 인공지능의 한계는 무엇일까?
1.5 인공지능 시스템이 실패하면 어떻게 될까?
1.6 인공지능은 어디로 향하고 있을까?
1.7 현재 인공지능 분야의 가장 큰 기여자는 누구일까?
1.8 수학이 인공지능에 기여한 점은 무엇일까?

Chapter 2 데이터, 데이터, 또 데이터

2.1 인공지능을 위한 데이터
2.2 실제 데이터와 시뮬레이션 데이터
2.3 수학 모델: 선형과 비선형
2.4 실제 데이터 예시
2.5 시뮬레이션 데이터 예시
2.6 수학 모델: 시뮬레이션과 인공지능
2.7 어디서 데이터를 얻는가?
2.8 데이터 분포, 확률, 통계에서 자주 등장하는 용어
2.9 연속 분포와 이산 분포
2.10 결합 확률 밀도 함수의 힘
2.11 균등 분포
2.12 정규 분포
2.13 자주 사용되는 분포들
2.14 분포의 다양한 의미
2.15 A/B 테스트

Chapter 3 데이터에 함수를 최적화시키는 방법

3.1 유용한 고전 머신러닝 모델들
3.2 수치적 방법과 분석적 방법
3.3 회귀: 숫자 값 예측
3.4 로지스틱 회귀: 이항 분류
3.5 소프트맥스 회귀: 다항 분류
3.6 신경망의 마지막 층에 모델 통합하기
3.7 유명한 머신러닝 방법과 앙상블 방법
3.8 분류 모델의 성능 평가

Chapter 4 신경망을 위한 최적화

4.1 대뇌 피질과 인공 신경망
4.2 훈련 함수: 완전 연결 신경망, 밀집 신경망, 순방향 신경망
4.3 손실 함수
4.4 최적화
4.5 정규화
4.6 머신러닝 모델의 하이퍼파라미터
4.7 연쇄 법칙과 역전파
4.8 입력 데이터 피처의 중요도 평가

Chapter 5 합성곱 신경망과 컴퓨터 비전

5.1 합성곱과 교차 상관관계
5.2 시스템 설계 관점에서의 합성곱
5.3 합성곱과 1차원 이산 신호
5.4 합성곱과 2차원 이산 신호
5.5 선형 대수 표기법
5.6 풀링
5.7 이미지 분류를 위한 합성곱 신경망

Chapter 6 특이값 분해: 이미지 처리, 자연어 처리, 소셜 미디어

6.1 행렬 분해
6.2 대각 행렬
6.3 공간상 선형 변환인 행렬
6.4 행렬 곱셈을 위한 세 가지 방법
6.5 큰 크림
6.6 특이값 분해의 구성 요소
6.7 특이값 분해 vs 고유값 분해
6.8 특이값 분해의 계산
6.9 유사 역행렬
6.10 이미지에 특이값 분해 적용하기
6.11 주성분 분석과 차원 축소
6.12 주성분 분석과 클러스터링
6.13 소셜 미디어에서의 응용
6.14 잠재 의미 분석
6.15 랜덤 특이값 분해

Chapter 7 자연어 처리와 금융 인공지능: 벡터화와 시계열 분석

7.1 자연어 처리 인공지능
7.2 자연어 데이터 준비하기
7.3 통계적 모델과 로그 함수
7.4 단어 수에 관한 지프의 법칙
7.5 자연어 문서의 다양한 벡터 표현
7.6 코사인 유사도
7.7 자연어 처리 애플리케이션
7.8 트랜스포머와 어텐션 모델
7.9 시계열 데이터를 위한 합성곱 신경망
7.10 시계열 데이터를 위한 순환 신경망
7.11 자연어 데이터 예제
7.12 금융 인공지능

Chapter 8 확률적 생성 모델

8.1 생성 모델은 어떤 경우에 유용한가?
8.2 생성 모델의 일반적인 수학
8.3 결정론적 사고에서 확률 이론적 사고로의 전환
8.4 최대 가능도 추정
8.5 명시적 밀도 모델과 암시적 밀도 모델
8.6 추적 가능한 명시적 밀도: 믿을 수 있는 가시적인 신경망
8.7 명시적 밀도 - 추적 가능: 변수 변환 및 비선형 독립 성분 분석
8.8 명시적 밀도 - 추적 불가능: 변분 오토인코더의 변분법을 통한 근사화
8.9 명시적 밀도 - 추적 불가능: 마르코프 체인을 통한 볼츠만 머신 근사
8.10 암시적 밀도 - 마르코프 체인: 확률적 생성 모델
8.11 암시적 밀도 - 적대적 생성 모델
8.12 예제: 머신러닝 및 생성 신경망을 활용한 고에너지 물리학
8.13 기타 생성 모델
8.14 생성 모델의 발전
8.15 확률 이론적 언어 모델링

Chapter 9 그래프 모델

9.1 그래프: 노드, 엣지, 피처
9.2 예제: 페이지 랭크 알고리즘
9.3 그래프를 사용한 역행렬 계산
9.4 케일리 그래프 그룹: 순수 대수학과 병렬 연산
9.5 그래프 내 메시지 전달
9.6 그래프의 무한한 활용
9.7 그래프에서의 랜덤 워크
9.8 노드 표현 학습
9.9 그래프 신경망의 응용
9.10 동적 그래프 모델
9.11 베이즈 네트워크
9.12 확률적 인과관계 모델링을 위한 그래프 다이어그램
9.13 그래프 이론의 간략한 역사
9.14 그래프 이론의 주요 고려 사항
9.15 그래프 알고리즘과 연산 측면

Chapter 10 운용 과학

10.1 공짜 점심은 없다
10.2 복잡도 분석과 빅오 표기법
10.3 최적화: 운용 과학의 핵심
10.4 최적화에 대한 고찰
10.5 네트워크상에서의 최적화


상품필수 정보

도서명 AI를 위한 필수 수학
저자/출판사 할라 넬슨 / 한빛미디어
크기/전자책용량 183x235x35
쪽수 640
제품 구성 낱권
발행일 2024-08-20
목차 또는 책소개 상세설명 참조

배송안내

- 배송비 : 기본배송료는 2,500원 입니다. (도서,산간,오지 일부지역은 배송비가 추가될 수 있습니다) 

- 본 상품의 평균 배송일은 3일입니다.(입금 확인 후) 설치 상품의 경우 다소 늦어질수 있습니다.[배송예정일은 주문시점(주문순서)에 따른 유동성이 발생하므로 평균 배송일과는 차이가 발생할 수 있습니다.]

- 본 상품의 배송 가능일은 3일 입니다. 배송 가능일이란 본 상품을 주문 하신 고객님들께 상품 배송이 가능한 기간을 의미합니다. (단, 연휴 및 공휴일은 기간 계산시 제외하며 현금 주문일 경우 입금일 기준 입니다.)

교환 및 반품안내

- 상품 택(tag)제거 또는 개봉으로 상품 가치 훼손 시에는 상품수령후 7일 이내라도 교환 및 반품이 불가능합니다.

- 저단가 상품, 일부 특가 상품은 고객 변심에 의한 교환, 반품은 고객께서 배송비를 부담하셔야 합니다(제품의 하자,배송오류는 제외)

- 일부 상품은 신모델 출시, 부품가격 변동 등 제조사 사정으로 가격이 변동될 수 있습니다.

- 신발의 경우, 실외에서 착화하였거나 사용흔적이 있는 경우에는 교환/반품 기간내라도 교환 및 반품이 불가능 합니다.

- 수제화 중 개별 주문제작상품(굽높이,발볼,사이즈 변경)의 경우에는 제작완료, 인수 후에는 교환/반품기간내라도 교환 및 반품이 불가능 합니다. 

- 수입,명품 제품의 경우, 제품 및 본 상품의 박스 훼손, 분실 등으로 인한 상품 가치 훼손 시 교환 및 반품이 불가능 하오니, 양해 바랍니다.

- 일부 특가 상품의 경우, 인수 후에는 제품 하자나 오배송의 경우를 제외한 고객님의 단순변심에 의한 교환, 반품이 불가능할 수 있사오니, 각 상품의 상품상세정보를 꼭 참조하십시오. 

환불안내

- 상품 청약철회 가능기간은 상품 수령일로 부터 7일 이내 입니다.

AS안내

- 소비자분쟁해결 기준(공정거래위원회 고시)에 따라 피해를 보상받을 수 있습니다.

- A/S는 판매자에게 문의하시기 바랍니다.

이미지 확대보기

AI를 위한 필수 수학

AI를 위한 필수 수학
AI를 위한 필수 수학

비밀번호 인증

글 작성시 설정한 비밀번호를 입력해 주세요.

확인

장바구니 담기

상품이 장바구니에 담겼습니다.
바로 확인하시겠습니까?

찜 리스트 담기

상품이 찜 리스트에 담겼습니다.
바로 확인하시겠습니까?

광고
최근본상품
0/0
상단으로 이동
 
AI를 위한 필수 수학
40,500원 2,500원 주문시결제(선결제)
AI를 위한 필수 수학 0
  • 상품가격 0원
  • 할인금액 0원
  • 총 결제 예정금액 0원