현재 위치
홈상품상세정보
*도서소개
콘텐츠 추천, 데이터 분석 등 현대 사회의 중요한 의사결정은 통계를 기반으로 이루어진다. 하지만 통계학의 수식과 이론만으로는 그 개념이 잘 와닿지 않을 때가 많다. 이 책은 그러한 어려움을 덜어주고자 이론과 더불어 파이썬 코드와 실습을 통해 직관적으로 이해할 수 있는 길을 안내한다. 넘파이와 팬더스 라이브러리로 데이터를 분석하고, 맷플롯립과 시본을 이용해 데이터를 시각화한다. 기술통계, 확률과 분포, 통계적 추정, 가설검정 등 통계의 기본을 다지고 나아가 머신러닝과의 접점까지 살펴본다. 이론에만 머무르지 않고 실제 데이터를 분석하며 통계 이론을 익히는 방식은 통계를 학습하는 데 큰 도움이 될 것이다. 통계가 어렵게만 느껴졌다면 이 책으로 시작해보자.
*출판사도서소개
데이터 분석에서 머신러닝까지
파이썬으로 배우는 통계
통계학이 어렵게 느껴지는 이유 중 하나는 이해해야 할 것이 너무 많다는 점입니다. 중요한 점은 개념 간 연결 관계를 파악하는 것입니다. 이 책은 독자가 개념들이 서로 어떻게 관련되어 있는지 쉽게 이해할 수 있도록 구성되었습니다.
1장에서 6장까지는 통계학 입문서의 성격을 띠며 기술통계, 확률과 분포의 기본, 통계적 추정 및 통계적 가설검정을 다룹니다. 7장부터 10장에서는 통계모델, 회귀분석, 선형모델 등의 분석 방법을 알아봅니다. 또한 예측 기술로서 머신러닝과의 접점을 다루어 통계학 기초부터 머신러닝에 이르기까지의 흐름을 이해할 수 있도록 구성했습니다.
통계에 관한 세세한 노하우와 팁보다는 통계 용어와 기본 수식, 간단한 파이썬 문법으로 구현하는 데 집중하여 통계학 기초를 다지기 위해 최선을 다했습니다. 글, 수식, 파이썬 코드로 같은 내용을 세 번에 걸쳐 설명하므로 점차 깊이 있게 내용을 이해할 수 있을 것입니다. 통계를 모르는 개발자나, 파이썬이 익숙하지 않지만 통계를 공부해보려는 독자가 데이터 분석에 필요한 통계를 배우려 한다면 이 책을 추천합니다.
초판과 달라진 점
● 초보자가 쉽게 학습할 수 있도록 구현 순서를 따라가며 해설하는 방식으로 구성을 개선했습니다.
● 이 책은 파이썬을 사용해 데이터를 분석하고 싶은 분들을 위한 책입니다. 파이썬 실습 코드를 점검하고 수정했습니다.
● 기술통계, 추론통계 실습 등에 대한 내용이 늘었습니다. 데이터를 처리하는 데 매우 중요한 기술이나 아이디어를 설명하는 부분이 늘었고, 층화분석과 같은 실용적인 기술도 절을 할애해 설명을 더했습니다.
주요 내용
● 통계학 기본
● 파이썬 기초와 주피터 노트북 설정
● 기술통계
● 확률과 확률분포
● 통계적 추정과 가설검정
● 통계모델
● 정규선형모델과 일반화선형모델
● 통계학과 머신러닝
*목차
_1.1 통계학
_1.2 왜 기술통계가 필요한가
_1.3 왜 추론통계가 필요한가
CHAPTER 2 파이썬과 주피터 노트북
_2.1 환경 구축
_2.2 주피터 노트북
_2.3 파이썬 프로그래밍
_2.4 넘파이와 팬더스
CHAPTER 3 기술통계
_3.1 데이터 분류
_3.2 수식을 읽는 방법
_3.3 도수분포
_3.4 1변량 데이터 통계량
_3.5 다변량 데이터 통계량
_3.6 층화분석
_3.7 그래프 활용
CHAPTER 4 확률과 확률분포
_4.1 확률론
_4.2 확률분포
_4.3 이항분포
_4.4 정규분포
CHAPTER 5 통계적 추정
_5.1 통계적 추론의 개념
_5.2 모집단에서 표본추출 시뮬레이션
_5.3 모평균 추정
_5.4 모분산 추정
_5.5 정규모집단에서 파생된 확률분포
_5.6 구간추정
CHAPTER 6 통계적 가설검정
_6.1 모평균에 대한 단일표본 t검정
_6.2 평균값 차이 검정
_6.3 분할표 검정
_6.4 검정 결과 해석
CHAPTER 7 통계모델
_7.1 통계모델 기본
_7.2 선형모델을 만드는 방법
_7.3 데이터 표현과 모델 명칭
_7.4 파라미터 추정: 가능도 최대화
_7.5 파라미터 추정: 손실 최소화
_7.6 예측 정확도 평가와 변수 선택
CHAPTER 8 정규선형모델
_8.1 연속형 독립변수가 하나인 모델: 단순회귀
_8.2 정규선형모델 평가
_8.3 분산분석
_8.4 독립변수가 여럿인 모델
CHAPTER 9 일반화선형모델
_9.1 일반화선형모델 기본
_9.2 로지스틱 회귀
_9.3 일반화선형모델 평가
_9.4 푸아송 회귀
CHAPTER 10 통계학과 머신러닝
_10.1 머신러닝 기본
_10.2 정규화와 리지 회귀, 라소 회귀
_10.3 파이썬을 이용한 리지 회귀와 라소 회귀
_10.4 선형모델과 신경망
상품필수 정보
도서명 | 파이썬으로 배우는 통계학 교과서 | ||
---|---|---|---|
저자/출판사 | 바바 신야 / 한빛미디어 | ||
크기/전자책용량 | 183x235x35 | ||
쪽수 | 528 | ||
제품 구성 | 낱권 | ||
발행일 | 2024-11-29 | ||
목차 또는 책소개 | 상세설명 참조 |
배송안내
- 배송비 : 기본배송료는 2,500원 입니다. (도서,산간,오지 일부지역은 배송비가 추가될 수 있습니다)
- 본 상품의 평균 배송일은 3일입니다.(입금 확인 후) 설치 상품의 경우 다소 늦어질수 있습니다.[배송예정일은 주문시점(주문순서)에 따른 유동성이 발생하므로 평균 배송일과는 차이가 발생할 수 있습니다.]
- 본 상품의 배송 가능일은 3일 입니다. 배송 가능일이란 본 상품을 주문 하신 고객님들께 상품 배송이 가능한 기간을 의미합니다. (단, 연휴 및 공휴일은 기간 계산시 제외하며 현금 주문일 경우 입금일 기준 입니다.)
교환 및 반품안내
- 상품 택(tag)제거 또는 개봉으로 상품 가치 훼손 시에는 상품수령후 7일 이내라도 교환 및 반품이 불가능합니다.
- 저단가 상품, 일부 특가 상품은 고객 변심에 의한 교환, 반품은 고객께서 배송비를 부담하셔야 합니다(제품의 하자,배송오류는 제외)
- 일부 상품은 신모델 출시, 부품가격 변동 등 제조사 사정으로 가격이 변동될 수 있습니다.
- 신발의 경우, 실외에서 착화하였거나 사용흔적이 있는 경우에는 교환/반품 기간내라도 교환 및 반품이 불가능 합니다.
- 수제화 중 개별 주문제작상품(굽높이,발볼,사이즈 변경)의 경우에는 제작완료, 인수 후에는 교환/반품기간내라도 교환 및 반품이 불가능 합니다.
- 수입,명품 제품의 경우, 제품 및 본 상품의 박스 훼손, 분실 등으로 인한 상품 가치 훼손 시 교환 및 반품이 불가능 하오니, 양해 바랍니다.
- 일부 특가 상품의 경우, 인수 후에는 제품 하자나 오배송의 경우를 제외한 고객님의 단순변심에 의한 교환, 반품이 불가능할 수 있사오니, 각 상품의 상품상세정보를 꼭 참조하십시오.
환불안내
AS안내
- 소비자분쟁해결 기준(공정거래위원회 고시)에 따라 피해를 보상받을 수 있습니다.
- A/S는 판매자에게 문의하시기 바랍니다.
이미지 확대보기
파이썬으로 배우는 통계학 교과서
비밀번호 인증
글 작성시 설정한 비밀번호를 입력해 주세요.
확인장바구니 담기
상품이 장바구니에 담겼습니다.
바로 확인하시겠습니까?
찜 리스트 담기
상품이 찜 리스트에 담겼습니다.
바로 확인하시겠습니까?