현재 위치
홈상품상세정보
*도서소개
*출판사도서소개
*목차
CHAPTER 1 머신러닝 엔지니어란
_1.1 ML 엔지니어링이라고 부르는 이유
_1.2 ML 엔지니어링 핵심 원칙
_1.3 ML 엔지니어링의 목표
_1.4 요약
CHAPTER 2 엔지니어링을 사용하는 데이터 과학
_2.1 프로젝트 성공률을 높이는 방법: 프로세스를 적용해 복잡한 전문성 강화하기
_2.2 단순한 토대의 중요성
_2.3 애자일 소프트웨어 엔지니어링의 공동 채택 원칙
_2.4 ML 엔지니어링의 기반
_2.5 요약
CHAPTER 3 프로젝트 계획 수립 및 범위 설정
_3.1 계획 수립: 무엇을 예측할까요?
_3.2 실험 범위 설정: 기대치와 제한
_3.3 요약
CHAPTER 4 의사소통과 프로젝트 규칙 논의
_4.1 의사소통: 문제 정의
_4.2 시간 낭비하지 않기: 크로스펑셔널 팀과의 회의
_4.3 실험 한계 설정
_4.4 비즈니스 규칙 혼돈에 대한 계획 수립
_4.5 결과에 대해 말하기
_4.6 요약
CHAPTER 5 ML 프로젝트 계획 및 연구
_5.1 실험 계획 수립
_5.2 실험 사전 준비 작업
_5.3 요약
CHAPTER 6 프로젝트 테스트 및 평가
_6.1 아이디어 테스트
_6.2 가능성 좁히기
_6.3 요약
CHAPTER 7 프로토타입에서 MVP로
_7.1 튜닝: 지루한 일을 자동화합시다
_7.2 플랫폼과 팀에 적절한 기술 선택
_7.3 요약
CHAPTER 8 MLflow 및 런타임 최적화로 MVP 마무리
_8.1 로깅: 코드, 지표 및 결과
_8.2 확장성 및 동시성
_8.3 요약
[PART 2 프로덕션 준비: 유지 관리 가능한 ML 만들기]
CHAPTER 9 ML 모듈화: 테스트 가능하고 읽기 쉬운 코드 작성
_9.1 모놀리식 스크립트의 개념과 나쁜 이유
_9.2 텍스트 벽으로 된 코드 디버깅
_9.3 모듈화된 ML 코드 설계
_9.4 ML에 TDD 방식 활용
_9.5 요약
CHAPTER 10 코딩 표준 및 유지 관리 가능한 ML 코드 작성
_10.1 ML 코드 스멜
_10.2 네이밍, 구조 및 코드 아키텍처
_10.3 튜플 언패킹 및 유지 관리 대안
_10.4 이슈에 눈 감기: 예외 및 기타 잘못된 관행 사용
_10.5 전역 가변 객체 사용
_10.6 과도하게 중첩된 로직
_10.7 요약
CHAPTER 11 모델의 측정과 그 중요성
_11.1 모델의 기여도 측정
_11.2 A/B 테스트를 활용한 기여도 계산
_11.3 요약
CHAPTER 12 드리프트 주시를 통한 상승세 유지
_12.1 드리프트 감지
_12.2 드리프트 대응
_12.3 요약
CHAPTER 13 ML 개발의 오만함
_13.1 우아하게 복잡한 코드와 과도한 엔지니어링의 차이
_13.2 의도치 않은 난독화: 남이 작성한 코드를 읽을 수 있을까요?
_13.3 성급한 일반화와 최적화 그리고 자신을 드러내기 위해 사용하는 나쁜 방법
_13.4 알파 테스트와 오픈 소스 생태계의 위험성
_13.5 기술 중심 개발 vs. 설루션 중심 개발
_13.6 요약
[PART 3 프로덕션 머신러닝 코드 개발]
CHAPTER 14 프로덕션 코드 작성
_14.1 데이터를 만났나요?
_14.2 피처 모니터링
_14.3 모델 수명 주기의 나머지 항목 모니터링
_14.4 최대한 단순하게 유지하기
_14.5 프로젝트 와이어프레임 작성
_14.6 카고 컬트 ML 행위 피하기
_14.7 요약
CHAPTER 15 품질과 인수 테스트
_15.1 데이터 일관성
_15.2 콜드 스타트와 대비책
_15.3 실사용자 vs. 내부 사용자 테스트
_15.4 모델의 해석 가능성
_15.5 요약
CHAPTER 16 프로덕션 인프라
_16.1 아티팩트 관리
_16.2 피처 스토어
_16.3 예측 서빙 아키텍처
_16.4 요약
[PART 4 부록]
APPENDIX A 빅오 및 런타임 성능 고려 방법
_A.1 빅오란 무엇인가요?
_A.2 예시별 복잡도
_A.3 의사 결정 트리 복잡도 분석
_A.4 일반적인 ML 알고리듬 복잡도
APPENDIX B 개발 환경 설정
_B.1 깔끔한 실험 환경의 예
_B.2 컨테이너를 활용한 의존성 지옥 대응
_B.3 컨테이너 기반의 깨끗한 실험 환경 만들기
상품필수 정보
도서명 | 머신러닝 엔지니어링 인 액션 | ||
---|---|---|---|
저자,출판사 | 벤 윌슨 / 한빛미디어 | ||
크기 | 183x235x35 | ||
쪽수 | 692 | ||
제품구성 | 0 | ||
발행일 | 2023-12-04 | ||
목차 또는 책소개 | 상세설명참조 |
배송안내
- 배송비 : 기본배송료는 2,500원 입니다. (도서,산간,오지 일부지역은 배송비가 추가될 수 있습니다)
- 본 상품의 평균 배송일은 3일입니다.(입금 확인 후) 설치 상품의 경우 다소 늦어질수 있습니다.[배송예정일은 주문시점(주문순서)에 따른 유동성이 발생하므로 평균 배송일과는 차이가 발생할 수 있습니다.]
- 본 상품의 배송 가능일은 3일 입니다. 배송 가능일이란 본 상품을 주문 하신 고객님들께 상품 배송이 가능한 기간을 의미합니다. (단, 연휴 및 공휴일은 기간 계산시 제외하며 현금 주문일 경우 입금일 기준 입니다.)
교환 및 반품안내
- 상품 택(tag)제거 또는 개봉으로 상품 가치 훼손 시에는 상품수령후 7일 이내라도 교환 및 반품이 불가능합니다.
- 저단가 상품, 일부 특가 상품은 고객 변심에 의한 교환, 반품은 고객께서 배송비를 부담하셔야 합니다(제품의 하자,배송오류는 제외)
- 일부 상품은 신모델 출시, 부품가격 변동 등 제조사 사정으로 가격이 변동될 수 있습니다.
- 신발의 경우, 실외에서 착화하였거나 사용흔적이 있는 경우에는 교환/반품 기간내라도 교환 및 반품이 불가능 합니다.
- 수제화 중 개별 주문제작상품(굽높이,발볼,사이즈 변경)의 경우에는 제작완료, 인수 후에는 교환/반품기간내라도 교환 및 반품이 불가능 합니다.
- 수입,명품 제품의 경우, 제품 및 본 상품의 박스 훼손, 분실 등으로 인한 상품 가치 훼손 시 교환 및 반품이 불가능 하오니, 양해 바랍니다.
- 일부 특가 상품의 경우, 인수 후에는 제품 하자나 오배송의 경우를 제외한 고객님의 단순변심에 의한 교환, 반품이 불가능할 수 있사오니, 각 상품의 상품상세정보를 꼭 참조하십시오.
환불안내
AS안내
- 소비자분쟁해결 기준(공정거래위원회 고시)에 따라 피해를 보상받을 수 있습니다.
- A/S는 판매자에게 문의하시기 바랍니다.
이미지 확대보기
머신러닝 엔지니어링 인 액션
비밀번호 인증
글 작성시 설정한 비밀번호를 입력해 주세요.
확인장바구니 담기
상품이 장바구니에 담겼습니다.
바로 확인하시겠습니까?
찜 리스트 담기
상품이 찜 리스트에 담겼습니다.
바로 확인하시겠습니까?