이벤트 배너 항공학교 교재구매

전체 카테고리

추천 메뉴

공지사항


현재 위치

머신러닝 엔지니어링 인 액션

공유
SNS 공유하기
  • 페이스북 공유
    페이스북
  • 트위터 공유
    트위터
  • 핀터레스트 공유
    핀터레스트
  • 카카오스토리 공유
    카카오스토리
  • 정가
    48,000
  • 판매가
    43,200
  • 구매제한
    최소 1개
  • 구매혜택

    할인 :

    적립 마일리지 :

  • 배송비
    0원 조건별배송
    금액별배송비
    0원 이상 ~ 18,000원 미만 2,500원
    18,000원 이상 0원

    배송비 계산 기준 : 판매가 + 옵션가 + 추가상품가 + 텍스트옵션가 - 상품할인가 - 상품쿠폰할인가

    택배  /  주문시결제(선결제)
    방문 수령지 : 경기도 파주시 산남로 5-84 (산남동) 디엠도서유통
  • 상품코드
    1000164932
  • 자체상품코드
    9791169211758
  • 브랜드
    한빛미디어
  • 제조사
    한빛미디어
  • 원산지
    상품상세참고
  • 제조일
    2023-12-04
머신러닝 엔지니어링 인 액션
0
  • 총 상품금액
  • 총 할인금액
  • 총 합계금액

상품상세정보

*도서소개

성공하는 머신러닝 프로젝트의 비밀순서도와 그림으로 살펴보는 머신러닝 프로젝트 A to Z이 책은 머신러닝 엔지니어링의 기본 개념부터 머신러닝 프로젝트에 필요한 설계 원칙, 좋은 ML 코드 작성법, 프로덕션 배포 전 고려해야 할 심화 주제까지 설명합니다. 수십 년간 축적된 훌륭한 소프트웨어 엔지니어링 경험 위에 세워진 머신러닝 엔지니어링은 ML 시스템의 복원력과 적응력, 프로덕션 환경에서의 성능을 보장합니다. 프로토타입으로 테스트하고, 모듈식 설계를 통해 탄력적인 아키텍처 구축 노하우를 배우고, 협업 시 일관된 커뮤니케이션을 제공하는 소프트웨어 엔지니어링 기술을 배워보세요. 성공적인 머신러닝 프로젝트의 비밀을 여러분의 기술로 만들어 안정적인 데이터 파이프라인, 효율적인 애플리케이션 워크플로, 유지 관리 가능한 ML 모델을 직접 구축해보길 바랍니다.

*출판사도서소개

머신러닝 프로젝트 종사자 필독서!다양한 예시, 이해를 돕는 순서도, 좋은 코드 작성법, 함정 회피법까지머신러닝 개발 현장에서 터득한 노하우 대방출프로젝트에 머신러닝을 도입해 프로덕션 수준으로 끌어올리기까지는 수많은 시행착오가 필요합니다. 그 시행착오 과정에서 길을 이끌어주는 훌륭한 가이드가 있다면 얼마나 든든할까요? 저자 벤 윌슨은 수많은 머신러닝 프로젝트를 직접 경험하며 온몸으로 터득한 노하우를 여러분에게 선보입니다. 비즈니스에 머신러닝을 도입할 때 마주하기 쉬운 함정을 피하는 방법과 일을 두 번 하지 않게 하는 계획 수립 전략, 협업 부서와의 현명한 소통법, 장기적으로 유지 관리 가능한 프로젝트 구현 방법, 배포 시 유념해야 할 사항들까지 머신러닝 프로젝트 설계 전반에 걸친 유용한 내용을 소개합니다. 이 책은 머신러닝 개발 현장에서 고군분투하고 있는 엔지니어뿐 아니라 데이터 과학자, 소프트웨어 아키텍트 등 머신러닝 프로젝트에 발을 담고 있는 모든 분에게 유용합니다. 이 책을 읽고 나면 각자의 역할을 더 잘 이해하고 업무를 더 효율적으로 요청하고 수행할 수 있을 것입니다. 주요 내용- 머신러닝 프로젝트의 계획 수립과 범위 설정하기- 설계에 적합한 기술 선택하는 방법 알아보기- 코드 기반의 이해도, 유지 보수, 테스트 가능성 높이기- 프로덕션의 품질을 높이는 고급 사항 살펴보기장별 내용- 1부(1장~8장): 팀장, 매니저, 프로젝트 리더 관점에서 ML 프로젝트의 관리 측면을 살펴봅니다. 설루션 구축 시 빠지기 쉬운 함정을 피할 수 있도록 범위 설정, 실험, 프로토타이핑에 대한 청사진을 제시하고, 포괄적인 피드백을 전달합니다.- 2부(9장~13장): ML 프로젝트의 개발 프로세스를 다룹니다. ML 설루션 개발의 좋은 예시와 나쁜 예시를 비교하며 ML 설루션을 빌드하고 튜닝하는 방법, 그리고 로깅과 평가를 하는 검증된 방법을 안내해 가장 간단하고 유지 관리하기 쉬운 코드를 만드는 법을 소개합니다.- 3부(14장~16장): 프로젝트의 프로덕션 배포, 재훈련, 모니터링 및 기여도와 관련한 고려 사항을 다룹니다. A/B 테스트와 피처 스토어, 재훈련 시스템 예제와 함께 시스템 구축과 아키텍처를 제공하며, 이를 통해 여러분은 비즈니스 문제를 ML로 해결하는 데 있어 최소한의 복잡성을 가지는 설루션을 구축할 수 있습니다.대상 독자- 머신러닝 엔지니어, 데이터 과학자, 소프트웨어 아키텍트 등 머신러닝 프로젝트 참여자- 머신러닝 엔지니어링 설계 과정에서 어려움을 겪고 있는 분- 머신러닝 엔지니어링을 활용해 무언가를 구축해보고 싶은 분- 머신러닝 엔지니어링에 관심 있는 누구나

*목차

[PART 1 머신러닝 엔지니어링 소개]

CHAPTER 1 머신러닝 엔지니어란
_1.1 ML 엔지니어링이라고 부르는 이유
_1.2 ML 엔지니어링 핵심 원칙
_1.3 ML 엔지니어링의 목표
_1.4 요약

CHAPTER 2 엔지니어링을 사용하는 데이터 과학
_2.1 프로젝트 성공률을 높이는 방법: 프로세스를 적용해 복잡한 전문성 강화하기
_2.2 단순한 토대의 중요성
_2.3 애자일 소프트웨어 엔지니어링의 공동 채택 원칙
_2.4 ML 엔지니어링의 기반
_2.5 요약

CHAPTER 3 프로젝트 계획 수립 및 범위 설정
_3.1 계획 수립: 무엇을 예측할까요?
_3.2 실험 범위 설정: 기대치와 제한
_3.3 요약

CHAPTER 4 의사소통과 프로젝트 규칙 논의
_4.1 의사소통: 문제 정의
_4.2 시간 낭비하지 않기: 크로스펑셔널 팀과의 회의
_4.3 실험 한계 설정
_4.4 비즈니스 규칙 혼돈에 대한 계획 수립
_4.5 결과에 대해 말하기
_4.6 요약

CHAPTER 5 ML 프로젝트 계획 및 연구
_5.1 실험 계획 수립
_5.2 실험 사전 준비 작업
_5.3 요약

CHAPTER 6 프로젝트 테스트 및 평가
_6.1 아이디어 테스트
_6.2 가능성 좁히기
_6.3 요약

CHAPTER 7 프로토타입에서 MVP로
_7.1 튜닝: 지루한 일을 자동화합시다
_7.2 플랫폼과 팀에 적절한 기술 선택
_7.3 요약

CHAPTER 8 MLflow 및 런타임 최적화로 MVP 마무리
_8.1 로깅: 코드, 지표 및 결과
_8.2 확장성 및 동시성
_8.3 요약

[PART 2 프로덕션 준비: 유지 관리 가능한 ML 만들기]

CHAPTER 9 ML 모듈화: 테스트 가능하고 읽기 쉬운 코드 작성
_9.1 모놀리식 스크립트의 개념과 나쁜 이유
_9.2 텍스트 벽으로 된 코드 디버깅
_9.3 모듈화된 ML 코드 설계
_9.4 ML에 TDD 방식 활용
_9.5 요약

CHAPTER 10 코딩 표준 및 유지 관리 가능한 ML 코드 작성
_10.1 ML 코드 스멜
_10.2 네이밍, 구조 및 코드 아키텍처
_10.3 튜플 언패킹 및 유지 관리 대안
_10.4 이슈에 눈 감기: 예외 및 기타 잘못된 관행 사용
_10.5 전역 가변 객체 사용
_10.6 과도하게 중첩된 로직
_10.7 요약

CHAPTER 11 모델의 측정과 그 중요성
_11.1 모델의 기여도 측정
_11.2 A/B 테스트를 활용한 기여도 계산
_11.3 요약

CHAPTER 12 드리프트 주시를 통한 상승세 유지
_12.1 드리프트 감지
_12.2 드리프트 대응
_12.3 요약

CHAPTER 13 ML 개발의 오만함
_13.1 우아하게 복잡한 코드와 과도한 엔지니어링의 차이
_13.2 의도치 않은 난독화: 남이 작성한 코드를 읽을 수 있을까요?
_13.3 성급한 일반화와 최적화 그리고 자신을 드러내기 위해 사용하는 나쁜 방법
_13.4 알파 테스트와 오픈 소스 생태계의 위험성
_13.5 기술 중심 개발 vs. 설루션 중심 개발
_13.6 요약

[PART 3 프로덕션 머신러닝 코드 개발]

CHAPTER 14 프로덕션 코드 작성
_14.1 데이터를 만났나요?
_14.2 피처 모니터링
_14.3 모델 수명 주기의 나머지 항목 모니터링
_14.4 최대한 단순하게 유지하기
_14.5 프로젝트 와이어프레임 작성
_14.6 카고 컬트 ML 행위 피하기
_14.7 요약

CHAPTER 15 품질과 인수 테스트
_15.1 데이터 일관성
_15.2 콜드 스타트와 대비책
_15.3 실사용자 vs. 내부 사용자 테스트
_15.4 모델의 해석 가능성
_15.5 요약

CHAPTER 16 프로덕션 인프라
_16.1 아티팩트 관리
_16.2 피처 스토어
_16.3 예측 서빙 아키텍처
_16.4 요약

[PART 4 부록]

APPENDIX A 빅오 및 런타임 성능 고려 방법
_A.1 빅오란 무엇인가요?
_A.2 예시별 복잡도
_A.3 의사 결정 트리 복잡도 분석
_A.4 일반적인 ML 알고리듬 복잡도

APPENDIX B 개발 환경 설정
_B.1 깔끔한 실험 환경의 예
_B.2 컨테이너를 활용한 의존성 지옥 대응
_B.3 컨테이너 기반의 깨끗한 실험 환경 만들기

상품필수 정보

도서명 머신러닝 엔지니어링 인 액션
저자,출판사 벤 윌슨 / 한빛미디어
크기 183x235x35
쪽수 692
제품구성 0
발행일 2023-12-04
목차 또는 책소개 상세설명참조

배송안내

- 배송비 : 기본배송료는 2,500원 입니다. (도서,산간,오지 일부지역은 배송비가 추가될 수 있습니다) 

- 본 상품의 평균 배송일은 3일입니다.(입금 확인 후) 설치 상품의 경우 다소 늦어질수 있습니다.[배송예정일은 주문시점(주문순서)에 따른 유동성이 발생하므로 평균 배송일과는 차이가 발생할 수 있습니다.]

- 본 상품의 배송 가능일은 3일 입니다. 배송 가능일이란 본 상품을 주문 하신 고객님들께 상품 배송이 가능한 기간을 의미합니다. (단, 연휴 및 공휴일은 기간 계산시 제외하며 현금 주문일 경우 입금일 기준 입니다.)

교환 및 반품안내

- 상품 택(tag)제거 또는 개봉으로 상품 가치 훼손 시에는 상품수령후 7일 이내라도 교환 및 반품이 불가능합니다.

- 저단가 상품, 일부 특가 상품은 고객 변심에 의한 교환, 반품은 고객께서 배송비를 부담하셔야 합니다(제품의 하자,배송오류는 제외)

- 일부 상품은 신모델 출시, 부품가격 변동 등 제조사 사정으로 가격이 변동될 수 있습니다.

- 신발의 경우, 실외에서 착화하였거나 사용흔적이 있는 경우에는 교환/반품 기간내라도 교환 및 반품이 불가능 합니다.

- 수제화 중 개별 주문제작상품(굽높이,발볼,사이즈 변경)의 경우에는 제작완료, 인수 후에는 교환/반품기간내라도 교환 및 반품이 불가능 합니다. 

- 수입,명품 제품의 경우, 제품 및 본 상품의 박스 훼손, 분실 등으로 인한 상품 가치 훼손 시 교환 및 반품이 불가능 하오니, 양해 바랍니다.

- 일부 특가 상품의 경우, 인수 후에는 제품 하자나 오배송의 경우를 제외한 고객님의 단순변심에 의한 교환, 반품이 불가능할 수 있사오니, 각 상품의 상품상세정보를 꼭 참조하십시오. 

환불안내

- 상품 청약철회 가능기간은 상품 수령일로 부터 7일 이내 입니다.

AS안내

- 소비자분쟁해결 기준(공정거래위원회 고시)에 따라 피해를 보상받을 수 있습니다.

- A/S는 판매자에게 문의하시기 바랍니다.

이미지 확대보기

머신러닝 엔지니어링 인 액션

머신러닝 엔지니어링 인 액션
머신러닝 엔지니어링 인 액션

비밀번호 인증

글 작성시 설정한 비밀번호를 입력해 주세요.

확인

장바구니 담기

상품이 장바구니에 담겼습니다.
바로 확인하시겠습니까?

찜 리스트 담기

상품이 찜 리스트에 담겼습니다.
바로 확인하시겠습니까?

광고
최근본상품
0/0
상단으로 이동
 
머신러닝 엔지니어링 인 액션
43,200원 2,500원 주문시결제(선결제)
머신러닝 엔지니어링 인 액션 0
  • 상품가격 0원
  • 할인금액 0원
  • 총 결제 예정금액 0원