현재 위치
홈상품상세정보
*도서소개
*출판사도서소개
*목차
테크니컬 폰 스크린
ML 기본 지식 면접
ML 코딩 면접
ML 시스템 설계 면접
기타 면접
우수한 답변의 필수 요소
2장 ML 기본 지식
Q2.1 데이터셋 수집 단계
Q2.2 데이터 수집 시 문제
Q2.3 데이터 수집 시 고려 사항
Q2.4 레이블 불균형 처리
Q2.5 누락된 레이블 처리
Q2.6 입력 피처 유형
Q2.7 피처 선택과 중요도
Q2.8 피처 선택 방법
Q2.9 누락된 피처값
Q2.10 모델링 알고리즘
Q2.11 로지스틱 회귀 작동 방식
Q2.12 로지스틱 회귀 손실 함수
Q2.13 경사하강법 최적화
Q2.14 하이퍼파라미터 튜닝
Q2.15 모델 과적합 처리
Q2.16 정규화 기법
Q2.17 선형 회귀와 로지스틱 회귀
Q2.18 신경망 활성화 함수
Q2.19 의사 결정 트리, 랜덤 포레스트, 그래디언트 부스팅 결정 트리
Q2.20 부스팅과 배깅
Q2.21 비지도 학습 기법
Q2.22 k-평균 작동 방식
Q2.23 준지도 학습 기법
Q2.24 손실 함수 유형
Q2.25 손실 함수 볼록성
Q2.26 분류 모델 평가 지표
Q2.27 회귀 모델 평가 지표
Q2.28 모델 최적화
Q2.29 모델 성능 개선
3장 ML 코딩
Q3.1 k-평균
Q3.2 k-최근접 이웃
Q3.3 의사 결정 트리
Q3.4 선형 회귀
Q3.5 평가 지표
Q3.6 저수지 샘플링
Q3.7 확률 문제
Q3.8 해시 테이블과 분산 프로그래밍 문제
Q3.9 그래프 문제
Q3.10 문자열 문제
Q3.11 배열 문제
4장 ML 시스템 설계 1 - 추천 시스템
Q4.1 시스템 목적
Q4.2 시스템 지표
Q4.3 추천 콘텐츠 유형
Q4.4 추천 콘텐츠 혼합
Q4.5 시스템 운영 매개변수
Q4.6 시스템 구성 요소
Q4.7 콜드 스타트 문제
Q4.8 데이터셋 유형
Q4.9 데이터셋 수집 기법
Q4.10 데이터셋 편향
Q4.11 서빙 편향 완화
Q4.12 위치 편향 완화
Q4.13 추천 후보 출처
Q4.14 추천 후보 생성 단계
Q4.15 추천 후보 생성 알고리즘
Q4.16 임베딩 기술
Q4.17 대규모 추천 시스템의 후보 스코어링
Q4.18 신규 콘텐츠 색인화
Q4.19 추천 후보 병합 및 정리
Q4.20 사전 랭킹 모델 학습
Q4.21 사전 랭킹 모델 평가 지표
Q4.22 사전 랭킹 모델 알고리즘
Q4.23 사전 랭킹 모델 최적화
Q4.24 랭킹 모델 주요 피처
Q4.25 텍스트 또는 ID 기반 피처
Q4.26 횟수 기반 피처
Q4.27 헤비 랭킹 모델 학습
Q4.28 헤비 랭킹 모델 알고리즘
Q4.29 랭킹 모델 아키텍처
Q4.30 랭킹 모델 예측값 보정
Q4.31 랭킹 모델 평가 지표
Q4.32 다중 작업 모델과 개별 모델
Q4.33 모델 서빙 시스템
Q4.34 캐싱
Q4.35 모델 업데이트
Q4.36 온라인 실험
Q4.37 모델 로드
Q4.38 모델 실험 고려 사항
Q4.39 오프라인 평가 지표
Q4.40 온라인 성능 저하
5장 ML 시스템 설계 2 - 응용
Q5.1 문서 파싱
Q5.2 감성 분석
Q5.3 토픽 모델링 기법
Q5.4 문서 요약
Q5.5 자연어 이해
Q5.6 지도 학습 레이블
Q5.7 비지도 학습 피처
Q5.8 판별적 문제 피처
Q5.9 생성 모델 피처
Q5.10 정보 추출 모델 구축
Q5.11 정보 추출 평가 지표
Q5.12 분류 모델 구축
Q5.13 회귀 모델 구축
Q5.14 토픽 할당
Q5.15 토픽 모델링 평가 지표
Q5.16 문서 클러스터링 모델 구축
Q5.17 클러스터링 평가 지표
Q5.18 텍스트 생성 모델 구축
Q5.19 텍스트 생성 평가 지표
Q5.20 모델링 워크플로
Q5.21 오프라인 예측
6장 ML 인프라 설계
Q6.1 모델 개발 가속화
Q6.2 모델 학습 가속화
Q6.3 모델 학습 분산
Q6.4 모델 학습 파이프라인 평가
Q6.5 분산 학습 오류
Q6.6 모델 업데이트
Q6.7 모델 최적화
Q6.8 서빙 시스템 구성 요소
Q6.9 서빙 시 문제
Q6.10 피처 수화 개선
Q6.11 지연 시간 개선
Q6.12 많은 요청 처리하기
Q6.13 서빙 시 모델 업데이트
Q6.14 모델 배포와 롤백
Q6.15 서버 모니터링
Q6.16 서빙 시 성능 저하
7장 고급 ML 문제
Q7.1 지연된 레이블
Q7.2 레이블 없이 학습하기
Q7.3 가격 모델
부록 A 생성 모델: 노이지 채널 모델에서 LLM까지
A.1 기계 번역(MT)
A.2 자동 음성 인식(ASR)
A.3 트랜스포머로의 수렴
A.4 현실의 과제를 위한 미세 조정
참고자료
찾아보기
상품필수 정보
도서명 | 인사이드 머신러닝 인터뷰 | ||
---|---|---|---|
저자/출판사 | 펑 샤오 / 한빛미디어 | ||
크기/전자책용량 | 183x235x17 | ||
쪽수 | 332 | ||
제품 구성 | 낱권 | ||
발행일 | 2024-03-15 | ||
목차 또는 책소개 | 상세설명 참조 |
배송안내
- 배송비 : 기본배송료는 2,500원 입니다. (도서,산간,오지 일부지역은 배송비가 추가될 수 있습니다)
- 본 상품의 평균 배송일은 3일입니다.(입금 확인 후) 설치 상품의 경우 다소 늦어질수 있습니다.[배송예정일은 주문시점(주문순서)에 따른 유동성이 발생하므로 평균 배송일과는 차이가 발생할 수 있습니다.]
- 본 상품의 배송 가능일은 3일 입니다. 배송 가능일이란 본 상품을 주문 하신 고객님들께 상품 배송이 가능한 기간을 의미합니다. (단, 연휴 및 공휴일은 기간 계산시 제외하며 현금 주문일 경우 입금일 기준 입니다.)
교환 및 반품안내
- 상품 택(tag)제거 또는 개봉으로 상품 가치 훼손 시에는 상품수령후 7일 이내라도 교환 및 반품이 불가능합니다.
- 저단가 상품, 일부 특가 상품은 고객 변심에 의한 교환, 반품은 고객께서 배송비를 부담하셔야 합니다(제품의 하자,배송오류는 제외)
- 일부 상품은 신모델 출시, 부품가격 변동 등 제조사 사정으로 가격이 변동될 수 있습니다.
- 신발의 경우, 실외에서 착화하였거나 사용흔적이 있는 경우에는 교환/반품 기간내라도 교환 및 반품이 불가능 합니다.
- 수제화 중 개별 주문제작상품(굽높이,발볼,사이즈 변경)의 경우에는 제작완료, 인수 후에는 교환/반품기간내라도 교환 및 반품이 불가능 합니다.
- 수입,명품 제품의 경우, 제품 및 본 상품의 박스 훼손, 분실 등으로 인한 상품 가치 훼손 시 교환 및 반품이 불가능 하오니, 양해 바랍니다.
- 일부 특가 상품의 경우, 인수 후에는 제품 하자나 오배송의 경우를 제외한 고객님의 단순변심에 의한 교환, 반품이 불가능할 수 있사오니, 각 상품의 상품상세정보를 꼭 참조하십시오.
환불안내
AS안내
- 소비자분쟁해결 기준(공정거래위원회 고시)에 따라 피해를 보상받을 수 있습니다.
- A/S는 판매자에게 문의하시기 바랍니다.
이미지 확대보기
인사이드 머신러닝 인터뷰
비밀번호 인증
글 작성시 설정한 비밀번호를 입력해 주세요.
확인장바구니 담기
상품이 장바구니에 담겼습니다.
바로 확인하시겠습니까?
찜 리스트 담기
상품이 찜 리스트에 담겼습니다.
바로 확인하시겠습니까?